Na/K Pump Mutations Associated with Primary Hyperaldosteronism Cause Loss of Function.

Biochemistry

Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research , Texas Tech University Health Sciences Center, Lubbock , Texas 79430 , United States.

Published: April 2019

Primary hyperaldosteronism (Conn's syndrome), a common cause of secondary hypertension, is frequently produced by unilateral aldosterone-producing adenomas that carry mutations in ion-transporting genes, including ATP1A1, encoding the Na/K pump's α1 subunit. Whether Na/K pump mutant-mediated inward currents are required to depolarize the cell and increase aldosterone production remains unclear, as such currents were observed in four out of five mutants described so far. Here, we use electrophysiology and uptake of the K congener Rb, to characterize the effects of eight additional Na/K pump mutations in transmembrane segments TM1 (delM102-L103, delL103-L104, and delM102-I106), TM4 (delI322-I325 and I327S), and TM9 (delF956-E961, delF959-E961, and delE960-L964), expressed in Xenopus oocytes. All deletion mutants induced abnormal inward currents of different amplitudes at physiological voltages, while I327S lacked such currents. A detailed functional characterization revealed that I327S significantly reduces intracellular Na affinity without altering affinity for external K. Rb-uptake experiments show that I327S dramatically impairs function under physiological concentrations of Na and K. Since Na/K pumps in the adrenal cortex may be formed by association of α1 with β3 instead of β1 subunits, we evaluated whether G99R (another mutant without inward currents when associated with β1) would show inward currents when associated with β3. We found that the kinetic characteristics of either mutant or wild-type α1β3 pumps expressed in Xenopus oocytes to be indistinguishable from those of α1β1 pumps. The observed functional consequences of each hyperaldosteronism mutant point to the loss of Na/K pump function as the common feature of all mutants, which is sufficient to induce hyperaldosteronism.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6779590PMC
http://dx.doi.org/10.1021/acs.biochem.9b00051DOI Listing

Publication Analysis

Top Keywords

na/k pump
16
pump mutations
8
primary hyperaldosteronism
8
expressed xenopus
8
xenopus oocytes
8
currents associated
8
na/k
6
currents
6
mutations associated
4
associated primary
4

Similar Publications

The persistent Na current (I) is thought to play important roles in many brain regions including the generation of inspiration in the ventral respiratory column (VRC) of mammals. The characterization of the slow inactivation of I requires long-lasting voltage steps (>1 s), which will increase intracellular Na and activate the Na/K-ATPase pump current (I). Thus, I may contribute to the previously measured slow inactivation of I and the generation of the inspiratory bursting rhythm.

View Article and Find Full Text PDF

Na-K-ATPase/GLT-1 interaction participates in EGCG protection against cerebral ischemia-reperfusion injury in rats.

Phytomedicine

January 2025

Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Department of Pathophysiology, Neuroscience Research Center, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang 050017, China. Electronic address:

Background: In China, stroke is the primary cause of adult death and disability. Because of the increased rate of blood vessel reperfusion, it is important to prevent cerebral ischemia-reperfusion injury, in which glutamate (Glu) excitotoxicity plays a critical role. The most important Glu transporter, GLT-1, is essential for the regulation of Glu, which is dependent on Na-K-ATPase (NKA)-induced ion concentration gradient differences.

View Article and Find Full Text PDF

Cellular metabolism is inextricably linked to transmembrane levels of proton (H), sodium (Na), and potassium (K) ions. Although reduced sodium-potassium pump (Na-K ATPase) activity in tumors directly disturbs transmembrane Na and K levels, this dysfunction is a result of upregulated aerobic glycolysis generating excessive cytosolic H (and lactate) which are extruded to acidify the interstitial space. These oncogene-directed metabolic changes, affecting intracellular Na and H, can be further exacerbated by upregulation of ion exchangers/transporters.

View Article and Find Full Text PDF

Exploring variances in meat quality between Qingyuan partridge chicken and Cobb broiler: Insights from combined multi-omics analysis.

Poult Sci

December 2024

State Key Laboratory of Livestock and Poultry Breeding, Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, PR China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Guangzhou, PR China. Electronic address:

Previously, animal breeding prioritized enhancing key economic traits to improve production efficiency, leading to a gradual difference in meat quality. However, the genetic factors influencing meat quality remain unclear. To identify key genetic pathways contributing to meat quality, native Chinese yellow-feathered chicken (Qingyuan Partridge Chicken, QPC; female, n=10), and commercial chicken broiler (Cobb broiler, CB; female, n=10) were used for meat quality assessment through metabolomics, proteomics, and phosphoproteomics sequencing.

View Article and Find Full Text PDF

Organization of the stalk system on electrocytes in mormyrid weakly electric fish Campylomormyrus compressirostris.

Cell Tissue Res

December 2024

Unit of Evolutionary Biology/Systematic Zoology, Institute of Biochemistry and Biology, University of Potsdam, 14476, Potsdam, Germany.

The adult electric organ in weakly electric mormyrid fish consists of action-potential-generating electrocytes, structurally and functionally modified skeletal muscle cells. The electrocytes have a disc-shaped portion and, on one of its sides, numerous thin processes, termed stalklets. These unite to stalks leading to a single main stalk that carries the innervation site.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!