Rescue of Escherichia coli cells from UV-induced death and filamentation by caspase-3 inhibitor.

Int Microbiol

Food Technology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, Maharashtra, 400085, India.

Published: September 2019

Escherichia coli cells have been observed earlier to display caspase-3-like protease activity (CLP) and undergo programmed cell death (PCD) when exposed to gamma rays. The presence of an irreversible caspase-3 inhibitor (Ac-DEVD-CMK) during irradiation was observed to increase cell survival. Since radiation is known to induce SOS response, the effect of a caspase-3 inhibitor on SOS response was studied in E. coli. UV, a well-known SOS inducer, was used in the current study. Cell filamentation in E. coli upon UV exposure was found to be inhibited by ninefold in the presence of a caspase-3 inhibitor. CLP activity was found to increase twofold in UV-exposed cells than in control (non-treated) cells. Further, bright fluorescing filaments were observed in UV-exposed E. coli cells treated with FITC-DEVD-FMK, a fluorescent dye tagged with an irreversible caspase-3 inhibitor (DEVD-FMK), indicating the presence of active CLP in these cells. Unlike caspase-3 inhibitor, a serine protease inhibitor, phenylmethanesulfonyl fluoride (PMSF), was not found to improve cell survival after UV treatment. Additionally, a SOS reporter system known as SIVET (selectable in vivo expression technology) assay was performed to reconfirm the inhibition of SOS induction in the presence of caspase-3 inhibitor. SIVET assay is used to quantify cells in which the SOS response has been induced leading to a scorable permanent selectable change in the cell. The SIVET induction frequency (calculated as the ratio of SIVET-induced cells to total viable cells) increased around tenfold in UV-exposed cultures. The induction frequency was found to decrease significantly to 51 from 80% in the cells pre-incubated with caspase-3 inhibitor. On the contrary, caspase-3 inhibitor failed to improve cell survival of E. coli ΔrecA and E. coli DM49 (SOS non-inducible) cells post UV treatment. Summing together, the results indicated a possible linkage of SOS response and the PCD process in E. coli. The findings also indicated that functional SOS pathway is required for CLP-like activity; however, the exact mechanism remains to be elucidated.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10123-019-00060-wDOI Listing

Publication Analysis

Top Keywords

caspase-3 inhibitor
36
sos response
16
coli cells
12
cell survival
12
cells
11
inhibitor
10
caspase-3
9
sos
9
coli
8
escherichia coli
8

Similar Publications

Background: Duchenne muscular dystrophy (DMD) is a prevalent, fatal degenerative muscle disease with no effective treatments. Mdx mouse model of DMD exhibits impaired muscle performance, oxidative stress, and dysfunctional autophagy. Although antioxidant treatments may improve the mdx phenotype, the precise molecular mechanisms remain unclear.

View Article and Find Full Text PDF

Background: Amiodarone, a common antiarrhythmic drug, is known for its severe side effects, including pulmonary toxicity, which involves oxidative stress and apoptosis. Artemisinin, an antimalarial drug, has shown cytoprotective properties by inhibiting oxidative stress and apoptosis. This study investigated the protective effects of artemisinin against amiodarone-induced toxicity in human bronchial epithelial cells (BEAS-2B) and mouse models.

View Article and Find Full Text PDF

Bisphenol A induces apoptosis and disrupts testosterone synthesis in TM3 cells via reactive oxygen species-mediated mitochondrial pathway and autophagic flux inhibition.

Ecotoxicol Environ Saf

January 2025

College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Harbin 150030, China. Electronic address:

Bisphenol A (BPA) is a common endocrine disruptor chemical that is widely used in the production of food plastic packaging, and it has been shown to potentially harm the reproductive system. However, the specific mechanism by which BPA induces apoptosis of Leydig cells (LCs) and inhibits testosterone synthesis in these cells is unclear. In the present study, TM3 cells were used as an experimental model in combination with a reactive oxygen species (ROS) scavenger (N-acetylcysteine), Caspase-3 inhibitor (Ac-DEVD-CHO), autophagy activator (Torin2), and autophagy inhibitor (Chloroquine) to investigate the potential mechanisms by which BPA causes TM3 cell damage in vitro.

View Article and Find Full Text PDF

Strychni Semen is the dried ripe seeds of the plant Strychnos nux-vomica L, and has great medicinal value and developmental potential.However, Strychni Semen is severely toxic, with adverse effects on the central nervous system, urinary system, and other organ systems, and severe cases can be life-threatening. The present study was to reveal the mechanism of nephrotoxicity induced by Strychni Semen and its alkaloid components using experiments.

View Article and Find Full Text PDF

Acute lung injury (ALI) is a severe inflammatory condition of the respiratory system, associated with high morbidity and mortality. This study investigates the therapeutic potential of tocilizumab (TZ), an IL-6 receptor inhibitor, in mitigating lipopolysaccharide (LPS)-induced ALI by modulating the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) pathway. An ALI model was established using LPS induction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!