Purpose: Pazopanib is an orally active, multi-targeted tyrosine kinase inhibitor. A previous phase I study demonstrated that coadministration of pazopanib with irinotecan increases the area under the plasma concentration-time curve (AUC) for SN-38, an active metabolite of irinotecan. To clarify the possible mechanism underlying that drug-drug interaction, we investigated the potential for pazopanib to inhibit UDP-glucuronosyltransferase (UGT)1A1 and organic anion-transporting polypeptide (OATP)1B1, which are involved in detoxification and hepatic uptake of SN-38, respectively.

Methods: Human liver microsomes (HLMs) and recombinant human UGT1A1, and HEK293 cells stably transfected with OATP1B1 were used to evaluate the inhibitory effects of pazopanib against glucuronidation, and hepatic uptake of SN-38, respectively. Kinetic analysis was performed to estimate inhibition constants, which were corrected for non-specific binding to enzyme sources (K values).

Results: Concentration-dependent inhibition of SN-38 glucuronidation was observed in the HLMs and recombinant human UGT1A1 experiments: Pazopanib noncompetitively inhibited SN-38 glucuronidation by HLMs (K = 1.6 ± 0.05 µM) and recombinant human UGT1A1 (K = 0.69 ± 0.02 µM). Pazopanib-induced increases in SN-38 AUC estimated using K values were comparable to those observed in patients of the phase I study who received both irinotecan and pazopanib. Such results suggest that the drug-drug interaction is at least partially mediated by inhibition of UGT1A1. In contrast, pazopanib did not inhibit OATP1B1-mediated SN-38 uptake at concentrations up to 60 µM.

Conclusions: Results showed that pazopanib inhibits UGT1A1-mediated SN-38 glucuronidation, but not OATP1B1-mediated SN-38 uptake.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00280-019-03784-8DOI Listing

Publication Analysis

Top Keywords

hepatic uptake
12
recombinant human
12
human ugt1a1
12
sn-38 glucuronidation
12
sn-38
10
pazopanib
9
glucuronidation oatp1b1-mediated
8
active metabolite
8
phase study
8
drug-drug interaction
8

Similar Publications

Background: Proprotein convertase subtilisin/kexin type 9 (PCSK9) is mainly secreted by the liver, and plays a crucial role in lipid metabolism disorder. Sodium-glucose cotransporter 2 inhibitors (SGLT2i) can regulate lipid metabolism through various pathways, including reducing visceral fat accumulation, modulating serum lipoprotein levels and alleviating hepatic steatosis. However, the specific regulatory mechanisms remain unclear.

View Article and Find Full Text PDF

Metabolic dysfunction-associated steatotic liver disease (MASLD) is a prevalent hepatic disorder worldwide. Arachidonic acid 15-lipoxygenase (ALOX15), an enzyme catalyzing the peroxidation of polyunsaturated fatty acids, plays a crucial role in various diseases. Here, we sought to investigate the involvement of ALOX15 in MASLD.

View Article and Find Full Text PDF

Background: Focal nodular hyperplasia (FNH)-like lesions are hyperplastic formations in patients with micronodular cirrhosis and a history of alcohol abuse. Although pathologically similar to hepatocellular carcinoma (HCC) lesions, they are benign. As such, it is important to develop methods to distinguish between FNH-like lesions and HCC.

View Article and Find Full Text PDF

Metal-based mesoporous polydopamine with dual enzyme-like activity as biomimetic nanodrug for alleviating liver fibrosis.

J Colloid Interface Sci

January 2025

Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China. Electronic address:

Liver fibrosis is a common pathological stage in the development of several chronic liver diseases, and early intervention can effectively reverse the developing process. Excessive reactive oxygen species (ROS) can promote the activation of hepatic stellate cells (HSCs), but existing treatments have not addressed this problem. In this study, different metal-based mesoporous polydopamine (MPDA) was prepared by the soft template method, and their free radical scavenging abilities, as well as the efficacy and safety of the carriers were investigated, so as to select Cu-coordinated MPDA (CMP) as the optimal nanocarrier.

View Article and Find Full Text PDF

Bacillus subtilis HGCC-1 improves growth performance and liver health via regulating gut microbiota in golden pompano.

Anim Microbiome

January 2025

China-Norway Joint Lab on Fish Gastrointestinal Microbiota, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.

Probiotics as green inputs have been reported to regulate metabolism and immunity of fish. However, the mechanisms by which probiotics improve growth and health of fish are unclear. Therefore, the aim of this study was to investigate the effect of Bacillus subtilis HGCC-1, an indigenous probiotic isolated from fish, on growth performance, host lipid metabolism, liver inflammation and gut microbiota of golden pompano.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!