The aim of this study was to investigate the frequency, antimicrobial sensitivity profile, and genetic characteristics of nosocomial strains of extended-spectrum β-lactamase (ESBL)-producing isolated from inpatients at a teaching hospital in Brazil. The bacterial identification, phenotypic detection of ESBL, and antimicrobial susceptibility profile were performed by the VITEK 2 automated system. Matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) mass spectrometry was used to confirm the identity of the species and genotyping of ESBL-producing was performed by pulsed-field gel electrophoresis (PFGE). Thirty-six ESBL-producing nosocomial strains isolated from November 2013 to August 2014 were analyzed. High resistance rates were observed for ceftriaxone, ceftazidime, cefepime, gentamicin, and ciprofloxacin. However, all isolates were susceptible to amikacin and meropenem. All strains harbored and genes. Molecular typing by PFGE showed a diversity of genotypes distributed among 25 clusters, but two isolates collected in different wards had the same genotypic profile and carried the same genes, so they were considered clones. The data showed that there was a high frequency of ESBL-producing multidrug-resistant among patients in the studied hospital. Furthermore, the detection of genes in all isolates suggests that these enzymes are the major ESBL responsible for the beta-lactam resistance phenotypes among the analyzed strains.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1089/mdr.2018.0142 | DOI Listing |
Amplified by the decline in antibiotic discovery, the rise of antibiotic resistance has become a significant global challenge in infectious disease control. Extraintestinal (ExPEC), known to be the most common instigators of urinary tract infections (UTIs), represent such global threat. Novel strategies for more efficient treatments are therefore desperately needed.
View Article and Find Full Text PDFInfect Drug Resist
January 2025
Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China.
Purpose: To investigate the molecular epidemiology and risk factors of carbapenem-resistant (CRKP) infection.
Patients And Methods: Patient's clinical data and CRKP strains were collected from November 2017 to December 2018 at a tertiary hospital in Wuhan, China. The antimicrobial susceptibilities, carbapenem-resistant genes, multi-locus sequence typing (MLST), homologous analysis, and risk factors for CRKP were determined.
Data Brief
February 2025
Biomedical Optics, Rawalpindi Medical University, Rawalpindi 46000, Pakistan.
is a well-known opportunistic pathogen, responsible for various nosocomial infections. UOL-KIMZ-24 was previously isolated from a clinical specimen, collected from Lahore General Hospital, Lahore (LGH), Pakistan, dated 3rd March, 2022. During the initial screening for antimicrobial susceptibility, the UOL-KIMZ-24 was found a multiple drug resistant (MDR) strain.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Microbiology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia.
The widespread use of disinfectants and antiseptics has led to the emergence of nosocomial pathogens that are less sensitive to these agents, which in combination with multidrug resistance (MDR) can pose a significant epidemiologic risk. We investigated the susceptibility of nosocomial , , , and to a 0.05% chlorhexidine (CHX) solution and a biocidal S7 composite solution based on CHX (0.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands.
is a Gram-positive bacterium that is responsible for severe nosocomial infections. The rise of multidrug-resistant strains, which can pose significant health threats, prompts the development of new treatment interventions, and much attention has been directed at the development of prophylactic and therapeutic vaccination strategies. Capsular polysaccharides (CPs) are key protective elements of the cell wall and have been proposed as promising candidate antigens.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!