In Alzheimer's disease, the density and spread of aggregated tau protein track well with neurodegeneration and cognitive decline, making the imaging of aggregated tau a compelling biomarker. A structure-activity relationship exploration around an isoquinoline hit, followed by an exploration of tolerated fluorination positions, allowed us to identify 9 (JNJ-64326067), a potent and selective binder to aggregated tau with a favorable pharmacokinetic profile and no apparent off-target binding. This was confirmed in rat and monkey positron emission tomography studies using [F]9.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jmedchem.8b01759 | DOI Listing |
Mol Neurodegener
December 2024
German Center for Neurodegenerative Diseases (LMU), Klinikum, Germany.
Background: The prion-like spreading of Tau pathology is the leading cause of disease progression in various tauopathies. A critical step in propagating pathologic Tau in the brain is the transport from the extracellular environment and accumulation inside naïve neurons. Current research indicates that human neurons internalize both the physiological extracellular Tau (eTau) monomers and the pathological eTau aggregates.
View Article and Find Full Text PDFJ Integr Neurosci
December 2024
Department of Human Anatomy, School of Basic Medical Sciences, Wannan Medical College, 241002 Wuhu, Anhui, China.
Background: K48-linked ubiquitin chain (Ub-K48) is a crucial ubiquitin chain implicated in protein degradation within the ubiquitin-proteasome system. However, the precise function and molecular mechanism underlying the role of Ub-K48 in the pathogenesis of Alzheimer's disease (AD) and neuronal cell abnormalities remain unclear. The objective of this study was to examine the function of K48 ubiquitination in the etiology of AD, and its associated mechanism of neuronal apoptosis.
View Article and Find Full Text PDFPharmacol Res
December 2024
Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156, Milan, Italy. Electronic address:
Alzheimer's disease, the leading cause of dementia globally, represents an unresolved clinical challenge due to its complex pathogenesis and the absence of effective treatments. Considering the multifactorial etiology of the disease, mainly characterized by the accumulation of amyloid β plaques and neurofibrillary tangles of tau protein, we discuss the A673V mutation in the gene coding for the amyloid precursor protein, which is associated with the familial form of Alzheimer's disease in a homozygous state. The mutation offers new insights into the molecular mechanisms of the disease, particularly regarding the contrasting roles of the A2V and A2T mutations in amyloid β peptide aggregation and toxicity.
View Article and Find Full Text PDFEur J Med Chem
December 2024
Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sinai University, Kantara Branch, Ismailia, 41636, Egypt.
Alzheimer's disease (AD) is primarily caused by oxidative stress, hyperphosphorylated τ-protein aggregation, and amyloid-β deposition. Changes in dopaminergic and serotoninergic neurotransmitter pathways are linked to certain symptoms of AD. Derivatives of bicyclic and tricyclic cyclohepta[b]thiophene were developed to identify new potential candidates as acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitors for the treatment of AD.
View Article and Find Full Text PDFFront Cell Neurosci
December 2024
Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy.
Introduction: Abnormal intracellular accumulation of Tau aggregates is a hallmark of Alzheimer's disease (AD) and other Tauopathies, such as Frontotemporal dementia (FTD). Tau deposits primarily affect neurons, but evidence indicates that glial cells may also be affected and contribute distinctively to disease progression. Cells can respond to toxic insults by orchestrating global changes in posttranslational modifications of their proteome.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!