Polymer core-shell nanocapsules with magnetic nanoparticles embedded in their oil cores were fabricated and applied as nano(photo)reactors. Superparamagnetic iron oxide nanoparticles (SPIONs) coated with oleic acid were first synthesized and characterized structurally, and their magnetic properties were determined. The capsules with chitosan-based shells were then formed in a one-step process by sonication-assisted mixing of (1) an aqueous solution of the hydrophobically derived chitosan and (2) oleic acid containing the dispersed SPIONs. In this way, magnetic capsules with a diameter of approximately 500-600 nm containing encapsulated SPIONs with an average diameter of approximately 20-30 nm were formed as revealed by dynamic light scattering and scanning transmission electron microscopy measurements. The composition and magnetic properties of the formed capsules were also followed using dynamic light scattering, electron microscopies, and magnetic force microscopy. The water-dispersible capsules, thanks to their magnetic properties, were then navigated in a static magnetic field gradient and transferred between the water and oil phases, as evidenced by fluorescence microscopy. In this way, the capsules could be loaded in a controlled way with a hydrophobic reactant, perylene, which was later photooxidized upon transferring the capsules to the aqueous phase. The capsules were shown to serve as robust reloadable nanoreactors/nanocontainers that via magnetic navigation can be transferred between immiscible phases without disruption. These features make them promising reusable systems not only for loading and carrying lipophilic actives, conducting useful reactions in the confined environment of the capsules, but also for magnetically separating and guiding the encapsulated active molecules to the site of action.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.8b22690DOI Listing

Publication Analysis

Top Keywords

magnetic properties
12
capsules
9
magnetic
8
oleic acid
8
dynamic light
8
light scattering
8
magnetically navigated
4
navigated core-shell
4
core-shell polymer
4
polymer capsules
4

Similar Publications

Two-dimensional inverse double sandwich CoB: strain-induced non-magnetic to ferromagnetic transition.

Phys Chem Chem Phys

January 2025

Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Materials Chemistry and Service Failure, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.

A full-scale structural search was performed using density functional theory calculations and a universal structural prediction evolutionary algorithm. This produced a lowest energy two-dimensional (2D) CoB structure. The CoB-1 global minimum structure has unusual inverse double sandwich features.

View Article and Find Full Text PDF

This study explores the effect of different extraction methods and preheat treatments in obtaining protein concentrate from pumpkin seed flour. The effects on the yield and functional properties of pumpkin seed protein concentrate (PSPC) were compared alongside microwave and conventional preheating methods using alkali, salt, and enzyme-assisted alkali extraction techniques. Analytical assessments included proximate analysis, soluble protein content, water solubility index (WSI), emulsification activity (EA) and stability (ES), foaming capacity (FC) and stability (FS), and antioxidant activity (AA).

View Article and Find Full Text PDF

Mycobacterial hemerythrin-like proteins (HLPs) are important for the survival of pathogens in macrophages. Their molecular mechanisms of function remain poorly defined but recent studies point to their possible role in nitric oxide (NO) scavenging. Unlike any nonheme diiron protein studied so far, the diferric HLP from (-HLP) reacts with NO in a multistep fashion to consume four NO molecules per diiron center.

View Article and Find Full Text PDF

Object: We aim to explore the immunomodulatory properties of T cells on different titanium nanotubes and the key immunological factors involved in this process.

Methods: Transcriptome data from GEO database of healthy people and healthy implants were used to analyze cell infiltration and factor distribution of adaptive immune using bioinformatics tools. T cells from activated rat were cultured on titanium nanotubes that were prepared by anodization with different diameters (P-0, NT15-30 nm, NT40-100 nm, NT70-200 nm).

View Article and Find Full Text PDF

Purpose: Tinnitus is considered a neurological disorder affecting both auditory and nonauditory networks. This study aimed to investigate the structural brain covariance network in tinnitus patients and analyze its altered topological properties.

Materials: Fifty three primary tinnitus patients and 67 age- and sex-matched healthy controls (HCs) were included.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!