A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Machine learning-based prediction of heart failure readmission or death: implications of choosing the right model and the right metrics. | LitMetric

Aims: Machine learning (ML) is widely believed to be able to learn complex hidden interactions from the data and has the potential in predicting events such as heart failure (HF) readmission and death. Recent studies have revealed conflicting results likely due to failure to take into account the class imbalance problem commonly seen with medical data. We developed a new ML approach to predict 30 day HF readmission or death and compared the performance of this model with other commonly used prediction models.

Methods And Results: We identified all Western Australian patients aged above 65 years admitted for HF between 2003 and 2008 in the linked Hospital Morbidity Data Collection. Taking into consideration the class imbalance problem, we developed a multi-layer perceptron (MLP)-based approach to predict 30 day HF readmission or death and compared the predictive performances using the performance metrics, that is, area under the receiver operating characteristic curve (AUC), area under the precision-recall curve (AUPRC), sensitivity and specificity with other ML and regression models. Out of the 10 757 patients with HF, 23.6% were readmitted or died within 30 days of hospital discharge. We observed an AUC of 0.55, 0.53, 0.58, and 0.54 while an AUPRC of 0.39, 0.38, 0.46, and 0.38 for weighted random forest, weighted decision trees, logistic regression, and weighted support vector machines models, respectively. The MLP-based approach produced the highest AUC (0.62) and AUPRC (0.46) with 48% sensitivity and 70% specificity.

Conclusions: We show that for the medical data with class imbalance, the proposed MLP-based approach is superior to other ML and regression techniques for the prediction of 30 day HF readmission or death.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6437443PMC
http://dx.doi.org/10.1002/ehf2.12419DOI Listing

Publication Analysis

Top Keywords

readmission death
20
class imbalance
12
30 day readmission
12
mlp-based approach
12
heart failure
8
failure readmission
8
imbalance problem
8
medical data
8
approach predict
8
predict 30 day
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!