The objective of this study is to evaluate the relationship between discoidin domain receptor 2 (DDR2) and miR-182 expression with response to platinum-based chemotherapy and survival in women with high-grade serous ovarian cancer (HGSOC). We evaluated 78 women with HGSOC stages I-IV, diagnosed between 1996 and 2013, and followed up until 2016. DDR2 expression was assessed using immunohistochemistry on tissue microarray slides. The microRNAs were evaluated by qRT-PCR. DDR2 expression was high in 11 (14.1%) women. PFS was significantly lower in women with FIGO stage I/II - versus III/IV, post-surgery residual disease and high expression of DDR2. Women with postsurgery residual disease, FIGO stage I/II - versus III/IV and DDR2 expression had worse OS, but only post-surgery residual disease remained an independent prognostic factor for worse OS in multivariable analysis. miR-182 expression levels were significantly lower in patients harboring tumors with higher expression of DDR2 (p < 0.001). In this relatively large cohort of women with HSGOC, higher DDR2 expression was associated with lower miR-182 levels and worse PFS, suggesting that these molecules may be associated with mechanisms of HGSOC progression.

Download full-text PDF

Source
http://dx.doi.org/10.1177/1010428318823988DOI Listing

Publication Analysis

Top Keywords

ddr2 expression
16
residual disease
12
discoidin domain
8
domain receptor
8
ddr2
8
receptor ddr2
8
survival women
8
women high-grade
8
high-grade serous
8
serous ovarian
8

Similar Publications

Melanoma, one of the most prevalent cancers worldwide, frequently metastasizes to the lung and bones. Tumor-associated macrophages play essential roles in melanoma metastasis but the underlying mechanism remains obscure. We previously demonstrated that specific knockout of Ddr2, a receptor tyrosine kinase, exacerbates systemic inflammation via modulating macrophage repolarization.

View Article and Find Full Text PDF

The combining of therapeutic agents with electrospun nanofibers boosts their regeneration potential; therefore, Researchers have increasingly turned towards the development of electrospun nanofiber scaffolds to encapsulate or surface-adsorb biological payloads, such as cytokines, exosomes, peptides, nucleic acids, and enzymes. Due to their high surface-to-volume ratio, ease of manufacturing, and drug-loading capacity, electrospun nanofibers are hopeful in tissue engineering and scaffold fabrication. Electrospun multilayer scaffolds offer a promising construction for preserving the integrity and bioactivity of therapeutic factors while permitting the controlled and prolonged release of biomolecules into the environment.

View Article and Find Full Text PDF

The blood-brain barrier (BBB) is a neurovascular structure that safeguards the brain by inhibiting the passage of harmful substances. In individuals with type 2 diabetes mellitus (T2DM), the heightened blood glucose may cause damage to endothelial cells and neurons, increase collagen protein content, and elevate BBB permeability. Although the impact of blood glucose regulation on the structure and function of BBB has been documented, the exact mechanism remains incompletely elucidated.

View Article and Find Full Text PDF

Exploring IRGs as a Biomarker of Pulmonary Hypertension Using Multiple Machine Learning Algorithms.

Diagnostics (Basel)

October 2024

Department of Clinical Laboratory Center, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China.

Background: Pulmonary arterial hypertension (PAH) is a severe disease with poor prognosis and high mortality, lacking simple and sensitive diagnostic biomarkers in clinical practice. This study aims to identify novel diagnostic biomarkers for PAH using genomics research.

Methods: We conducted a comprehensive analysis of a large transcriptome dataset, including PAH and inflammatory response genes (IRGs), integrated with 113 machine learning models to assess diagnostic potential.

View Article and Find Full Text PDF

A novel 3D cardiac microtissue model for investigation of cardiovascular complications in rheumatoid arthritis.

Stem Cell Res Ther

October 2024

Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland.

Background: Rheumatoid arthritis (RA) is a chronic inflammatory disease that affects not only the joints but also has significant cardiovascular (CV) manifestations. The mechanistic interplay between RA and cardiovascular complications is not yet well understood due to the lack of relevant in vitro models. In this study, we established RA cardiac microtisses (cMTs) from iPSC-derived cardiomyocytes (CMs), endothelial cells (ECs) and cardiac fibroblasts (CFs) to investigate whether this fully human 3D multicellular system could serve as a platform to elucidate the connection between RA and CV disorders.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!