Scandentia (treeshrews) is an order of small-bodied Indomalayan mammals generally agreed to be a member of Euarchonta with Primates and Dermoptera (colugos). However, intraordinal relationships among treeshrews are less well understood. Although recent studies have begun to clarify treeshrew taxonomy using morphological and molecular datasets, previous analysis of treeshrew dentition has yielded little clarity in terms of species-level relationships within the order. However, these studies made use of character-based methods, scoring traits across the dental arcade, which depend on there being clear differences among taxa that can be encapsulated in coding schemes. Geometric morphometrics has the potential to capture subtler shape variation, so it may be better for examining similarities among closely related taxa whose teeth have a similar bauplan. We used three-dimensional geometric morphometrics on a sample of treeshrew lower second molars and compared the patterns of variation to the results of previous studies. We captured 19 landmarks on a sample of 43 specimens representing 15 species. Using specimen-based principal components analysis and between-group principal component analysis, the two treeshrew families (Tupaiidae and Ptilocercidae) were well separated in morphospace. Moreover, several treeshrew species plot in morphospace according to the clades established in previous molecular work, with closely related species plotting closer to one another than to more distantly related species, suggesting that dental morphology can be useful when studying relationships among treeshrews. As most extinct treeshrews are known only from teeth, understanding morphological patterns in treeshrew molars is important for future work on the evolutionary history of Scandentia. Anat Rec, 302:1154-1168, 2019. © 2019 Wiley Periodicals, Inc.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/ar.24105 | DOI Listing |
BMC Biol
November 2024
Department of Ecology, Evolution and Marine Biology, University of California Santa Barbara, Santa Barbara, USA.
Urolithiasis
November 2024
The Department of Urology, The Second Affiliated Hospital of Kunming Medical University, No. 374 Dian-Mian Avenue, Kunming, Yunnan, 650101, P.R. China.
Our comprehensive genomic investigation employing tree shrew calcium oxalate stone models unveils intricate links between kidney stone formation and diverse physiological systems. We identify a constellation of genes whose expression patterns point to multifaceted interactions among cardiovascular health, renal fibrosis, and bone homeostasis in the pathogenesis of renal calculi. Key players include CHIT1, TNFRSF18, CLEC4E, RGS1, DCSTAMP, and SLC37A2, which emerge as pivotal actors in arteriosclerosis, renal fibrosis, and osteoclastogenesis respectively, showcasing the complexity of stone disease.
View Article and Find Full Text PDFLab Invest
November 2024
National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Key Laboratory of Genetic Evolution & Animal Models, and National Resource Center for Nonhuman Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China; Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, and KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China. Electronic address:
The surge in demand for experimental monkeys has led to a rapid increase in their costs. Consequently, there is a growing need for a cost-effective model of Parkinson disease (PD) that exhibits all core clinical and pathologic phenotypes. Evolutionarily, tree shrews (Tupaia belangeri) are closer to primates in comparison with rodents and could be an ideal species for modeling PD.
View Article and Find Full Text PDFSci Rep
September 2024
Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
Myopia is a common ocular condition characterized by biomechanical weakening revealed by increasing creep rate, cyclic softening scleral thinning, change of collagen fibril crimping, and excessive elongation of the posterior sclera resulting in blurred vision. Animal studies support scleral crosslinking as a potential treatment for myopia control by strengthening the weakened sclera and slowing scleral expansion. While multiple studies investigated aspects of the biomechanical weakening and strengthening effects in myopia and after scleral crosslinking, a comprehensive analysis of the underlying mechanical changes including the effect of vehicle injections is still missing.
View Article and Find Full Text PDFZool Res
July 2024
CAS Key Laboratory of Brain Function and Diseases, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, China.
The tree shrew ( ) has long been proposed as a suitable alternative to non-human primates (NHPs) in biomedical and laboratory research due to its close evolutionary relationship with primates. In recent years, significant advances have facilitated tree shrew studies, including the determination of the tree shrew genome, genetic manipulation using spermatogonial stem cells, viral vector-mediated gene delivery, and mapping of the tree shrew brain atlas. However, the limited availability of tree shrews globally remains a substantial challenge in the field.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!