Postmenopausal osteoporosis (PMOP), as well as its associated increased risk for fragility fracture, is one of the most disabling consequences of aging in women. This present study aimed to identify candidate genes that involve pathogenesis of PMOP and the therapeutic mechanism of Liuweidihuang (LWDH) pills on PMOP. We integrated microarray datasets of PMOP derived from the Gene Expression Omnibus (GEO) to screen differentially expressed genes (DEGs) between PMOP and normal controls as well as patients with PMOP and patients after treatment of LWDH pills. GO and KEGG enrichment analysis for DEGs were performed. The shared DEGs, associated with both the pathogenesis of PMOP and the therapeutic mechanism of LWDH, were further analyzed by protein-protein interaction (PPI) network. Quantitative real-time polymerase chain reaction (qRT-PCR) was performed to verify the DEGs obtained by our integrated analysis. Compared with normal controls, 1732 DEGs in PMOP were obtained with <0.05. According to the qRT-PCR results, expression of ATF2, FBXW7, RDX, and RBBP4 was consistent with that in our integrated analysis, generally. GO and KEGG enrichment analysis showed that those DEGs were significantly enriched in regulation of transcription, DNA-dependent, cytoplasm, protein binding, and MAPK signaling pathway. A total of 58 shared DEGs in PMOP versus normal control and in patients with PMOP versus patients after LWDH treatment were identified, which had opposite expression trend in these two comparisons. In the PPI network, CSNK2A1, ATF2, and FBXW7 were three hub proteins. Three genes including ATF2, FBXW7, and RDX were speculated to be therapeutic targets of LWDH for PMOP based on BATMAN-TCM database. We speculated that three genes of ATF2, FBXW7, and RDX may play crucial roles in both pathogenesis of PMOP and therapeutic mechanism of LWDH on PMOP. Our results may provide clues for the molecular pathogenesis of PMOP and offer new possibilities for treatment of PMOP.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6369488 | PMC |
http://dx.doi.org/10.1155/2019/1907906 | DOI Listing |
Physiol Plant
January 2025
College of Life Sciences/ College of Agriculture, Yangtze University, Jingzhou, China.
Rac/Rop proteins, a kind of unique small GTPases in plants, play crucial roles in plant growth and development and in response to abiotic and biotic stresses. However, it is poorly understood whether cotton Rac/Rop protein genes are involved in mediating cotton resistance to Verticillium dahliae. Here, we focused on the function and mechanism of cotton Rac/Rop gene GhRac9 in the defense response to Verticillium dahliae infection.
View Article and Find Full Text PDFPharmazie
December 2024
Department of Respiratory Medicine, Fourth Affiliated Hospital, Harbin Medical University Harbin, Heilongjiang, China.
Cigarette smoke extract (CSE)-induced airway mucus hypersecretion and inflammation are prominent features of chronic obstructive pulmonary disease (COPD). As a factor associated with inflammation regulation, T cell immunoglobulin and mucin domain-1 (TIM-1) is found to be involved in various inflammatory disorders such as asthma and COPD. In this study, the GEO database provides two human COPD gene expression datasets (GSE67472, n = 62) along with the relevant controls (n = 43) for differentially expressed gene (DEG) analyses.
View Article and Find Full Text PDFClin Rev Allergy Immunol
January 2025
Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
In recent years, epigenetic modifications have attracted significant attention due to their unique regulatory mechanisms and profound biological implications. Acting as a bridge between environmental stimuli and changes in gene activity, they reshape gene expression patterns, providing organisms with regulatory mechanisms to respond to environmental changes. A growing body of evidence indicates that epigenetic regulation plays a crucial role in the pathogenesis and progression of psoriasis.
View Article and Find Full Text PDFAnn Biomed Eng
January 2025
Department of Biomedical Engineering, Yildiz Technical University, Esenler, 34220, Istanbul, Türkiye.
Titanium (Ti)-based materials are favored for hard tissue applications, yet their bioinertness limits their success. This study hypothesizes that functionalizing Ti materials with chitosan nano/microspheres and calcitriol (VD) will enhance their bioactivity by improving cellular activities and mineralization. To test this, chitosan particles were applied uniformly onto Ti surfaces using electrophoretic deposition (EPD) at 20 V for 3 minutes.
View Article and Find Full Text PDFIn Vitro Cell Dev Biol Anim
January 2025
Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250012, Shandong, China.
Cleft lip and palate (CL/P) are prevalent congenital anomalies with complex genetic causes. The G874A mutation of T-box transcription factor 22 (TBX-22) gene is notably associated with CL/P, while the underlying mechanism remains to be clarified. Studies have shown that the restriction of epithelial-mesenchymal transformation (EMT) process in medial edge epithelial cells (MEEs) is crucial for CL/P development.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!