Aim: To investigate the regulation and mechanisms of periostin expression in retinal Müller glia, and to explore the relevance to retinal neovascularization.

Methods: The oxygen-induced retinopathy (OIR) mouse model and the human Moorfield/Institute of Ophthalmology-Müller 1 (MIO-M1) cell line were used in the study. Immunofluorescence staining was used to determine the distribution and expression of periostin and a Müller glial cell marker glutamine synthetase (GS). Cytokines TNF-α and IFN-γ were added to stimulate the MIO-M1 cells. ShRNA was used to knockdown periostin expression in MIO-M1 cells. Quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR) was conducted to assess the mRNA expression of periostin.

Results: Immunofluorescence staining showed that periostin was expressed by MIO-M1 Müller glia. GS-positive Müller glia and periostin increased in OIR retinas, and were partially overlaid. The stimulation of TNF-α and IFN-γ reduced the mRNA expression of periostin significantly and dose-dependently in MIO-M1 cells. Knockdown of periostin reduced mRNA expression of vascular endothelial growth factor A (VEGFA) in MIO-M1 cells, while VEGFA expression was not changed in periostin knock-out OIR retinas.

Conclusion: Müller glia could be one of the main sources of periostin in the retina, and might contribute to the pathogenesis of retinal neovascularization. Proinflammatory cytokines TNF-α and IFN-γ attenuate the periostin expression in retinal Müller glia, which provides a potential and novel method in treating retinal neovascular diseases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6376243PMC
http://dx.doi.org/10.18240/ijo.2019.02.05DOI Listing

Publication Analysis

Top Keywords

müller glia
24
tnf-α ifn-γ
16
mio-m1 cells
16
retinal müller
12
periostin expression
12
mrna expression
12
periostin
10
expression
8
expression retinal
8
immunofluorescence staining
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!