Reversal of carbapenem-resistance in by CRISPR/Cas9 genome editing.

J Adv Res

Division of Infectious Diseases, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan.

Published: July 2019

Antibiotic resistance in pathogens is a growing threat to human health. Of particular concern is resistance to carbapenem, which is an antimicrobial agent listed as critically important by the World Health Organization. With the global spread of carbapenem-resistant organisms, there is an urgent need for new treatment options. is an emerging pathogen found in marine environments throughout the world that has increasing resistance to carbapenem. The organism is also a possible antibiotic resistance reservoir in humans and in its natural habitat. The development of CRISPR/Cas9-based methods has enabled precise genetic manipulation. A number of attempts have been made to knock out resistance genes in various organisms. The study used a single plasmid containing CRISPR/Cas9 and recE/recT recombinase to reverse an antibiotic-resistant phenotype in and showed gene is essential for the carbapenem resistance. This result demonstrates a potential validation strategy for functional genome annotation in .

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6374997PMC
http://dx.doi.org/10.1016/j.jare.2019.01.011DOI Listing

Publication Analysis

Top Keywords

antibiotic resistance
8
resistance carbapenem
8
resistance
6
reversal carbapenem-resistance
4
carbapenem-resistance crispr/cas9
4
crispr/cas9 genome
4
genome editing
4
editing antibiotic
4
resistance pathogens
4
pathogens growing
4

Similar Publications

The Helicobacter pylori flagellar motor contains several accessory structures that are not found in the archetypal Escherichia coli and Salmonella enterica motors. H. pylori hp0838 encodes a previously uncharacterized lipoprotein and is in an operon with flgP, which encodes a motor accessory protein.

View Article and Find Full Text PDF

Non-conformance with antibiotic withdrawal period guidelines represents a food safety concern, with potential for antibiotic toxicities and allergic reactions as well as selecting for antibiotic resistance. In the Kenyan domestic pig market, conformance with antibiotic withdrawal periods is not a requirement of government legislation and evidence suggests that antibiotic residues may frequently be above recommended limits. In this study, we sought to explore enablers of and barriers to conformance with antibiotic withdrawal periods for pig farms supplying a local independent abattoir in peri-urban Nairobi.

View Article and Find Full Text PDF

Antimicrobial peptides (AMPs) are promising agents for treating antibiotic-resistant bacterial infections. Although discovering novel AMPs is crucial for combating multidrug-resistant bacteria and biofilm-related infections, their clinical potential relies on precise, real-time evaluation of efficacy, toxicity, and mechanisms. Optical diffraction tomography (ODT), a label-free imaging technology, enables real-time visualization of bacterial morphological changes, membrane damage, and biofilm formation over time.

View Article and Find Full Text PDF

The agricultural productivity and world-wide food security is affected by different phytopathogens, in which Fusarium is more destructive affecting more than 150 crops, now got resistance against many fungicides that possess harmful effects on environment such as soil health, air pollution, and human health. Fusarium fungicide resistance is an increasing concern in agricultural and environmental contexts, requiring a thorough understanding of its causes, implications, and management approaches. The mechanisms of fungicide resistance in Fusarium spp.

View Article and Find Full Text PDF

A major risk to the poultry industry is antimicrobial resistance (AMR), specifically with regard to Mycoplasma gallisepticum (MG) infections. The sensitivity patterns of 100 MG isolates to biocides and antibiotics were examined in this study to clarify the interactions between antimicrobial agents and resistance mechanisms. The antimicrobial activity against MG was assessed using broth microdilution, and the results are shown as the minimum inhibitory concentration (MIC) for each strain, the MIC distribution (range), the MIC, and/or the MIC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!