Background: Surface roughness can be used to identify disease within biological tissues. Quantifying surface roughness in the coronary arteries aids in developing treatments for coronary heart disease. This study investigates the effect of extreme physiological loading on surface roughness, for example, due to a rupture of an artery.
Methods: The porcine left anterior descending (LAD) coronary arteries were dissected ex vivo. Mechanical overloading was applied to the arteries in the longitudinal direction to simulate extreme physiological loading. Surface roughness was calculated from three-dimensional reconstructed images. Surface roughness was measured before and after damage and after chemical processing to dehydrate tissue specimens.
Results: Control specimens confirmed that dehydration alone results in an increase of surface roughness in the circumferential direction only. No variation was noted between the hydrated healthy and damaged specimens, in both the longitudinal (0.91 ± 0.26 and 1.05 ± 0.25 m) and circumferential (1.46 ± 0.38 and 1.47 ± 0.39 m) directions. After dehydration, an increase in surface roughness was noted for damaged specimens in both the longitudinal (1.28 ± 0.33 m) and circumferential (1.95 ± 0.56 m) directions.
Conclusions: Mechanical overloading applied in the longitudinal direction did not significantly affect surface roughness. However, when combined with chemical processing, a significant increase in surface roughness was noted in both the circumferential and longitudinal directions. Mechanical overloading causes damage to the internal constituents of the arteries, which is significantly noticeable after dehydration of tissue.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6364105 | PMC |
http://dx.doi.org/10.1155/2019/2784172 | DOI Listing |
ACS Appl Bio Mater
January 2025
Department of Stomatology, Second Affiliated Hospital, Third Military Medical University, Chongqing 400037, P. R. China.
Micro- and nanomorphological modification and roughening of titanium implant surfaces can enhance osseointegration; however, the optimal morphology remains unclear. Laser processing of implant surfaces has demonstrated significant potential due to its precision, controllability, and environmental friendliness. Femtosecond lasers, through precise optimization of processing parameters, can modify the surface of any solid material to generate micro- and nanomorphologies of varying scales and roughness.
View Article and Find Full Text PDFNanoscale
January 2025
Department of Chemistry and Materials Science, Tietotie 3, Espoo, 02150, Finland.
Superhydrophobic surfaces are essential in various industries such as textiles, aviation, electronics and biomedical devices due to their exceptional water-repellent properties. Black silicon (b-Si) would be an ideal candidate for some applications due to its nanoscale topography made with a convenient lithography-free step and complementary metal-oxide-semiconductor (CMOS) compatible fabrication process. However, its use is hindered by serious issues with mechanical robustness.
View Article and Find Full Text PDFLangmuir
January 2025
Department of Robotics Engineering, Hanyang University, 55 Hanyangdaehak-ro, Ansan, Gyeonggi-do 15588, Republic of Korea.
This study investigates the corrosion inhibition effects of eco-friendly conifer cone extract (CCE) on steel rebars embedded in cement mortar exposed to 3.5% NaCl under alternate wet/dry cycles. CCE concentrations of 0, 0.
View Article and Find Full Text PDFHeliyon
January 2025
Advanced Technologies of Machine Tools (ATMT) Lab, Faculty of Mechanical Engineering, Tarbiat Modares University, Tehran, Iran.
Electrochemical grinding (ECG) offers advantages such as burr-free and stress-free material removal. Despite its proven potential, limited research has addressed the comprehensive effects of key process parameters on the surface integrity of AISI 304 stainless steel, particularly for applications requiring high-quality finishes, such as medical components. This study bridges this gap by systematically investigating the influence of ECG key parameters including voltage, rotational speed, and electrolyte concentration on main surface integrity parameters including current density, surface roughness, microhardness, and surface texture.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Solid State Engineering, University of Chemistry and Technology Prague, 166 28 Prague, Czech Republic.
Here, we present surface analysis and biocompatibility evaluation of novel composite material based on graphene oxide traded as BioHastalex. The pristine material's surface morphology and surface chemistry were examined by various analytical methods. The BioHastalex with a thin silver layer was subsequently heat treated and characterized, the impact on the material surface wettability and morphology was evaluated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!