Inferring the demographic history of Japanese cedar, Cryptomeria japonica, using amplicon sequencing.

Heredity (Edinb)

Department of Environmental Changes, Faculty of Social and Cultural Studies, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.

Published: September 2019

The evolution of a species depends on multiple forces, such as demography and natural selection. To understand the trajectory and driving forces of evolution of a target species, it is first necessary to uncover that species' population history, such as past and present population sizes, subdivision and gene flow, by using appropriate genetic markers. Cryptomeria japonica is a long-lived monoecious conifer species that is distributed in Japan. There are two main lines (omote-sugi and ura-sugi), which are distinguished by apparent differences in morphological traits that may have contributed to their local adaptation. The evolution of these morphological traits seems to be related to past climatic changes in East Asia, but no precise estimate is available for the divergence time of these two lines and the subsequent population dynamics in this species. Here, we analyzed the nucleotide variations at 120 nuclear genes in 94 individuals by using amplicon sequencing in combination with high-throughput sequencing technologies. Our analysis indicated that the population on Yakushima Island, the southern distribution limit of C. japonica in Japan, diverged from the other populations 0.85 million years ago (MYA). The divergence time of the other populations on mainland Japan was estimated to be 0.32 MYA suggesting that the divergence of omote-sugi and ura-sugi might have occurred before the last glacial maximum. Although we found modest levels of gene flow between the present populations, the long-term isolation and environmental heterogeneity caused by climatic changes might have contributed to the differentiation of the lines and their local adaptation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6781112PMC
http://dx.doi.org/10.1038/s41437-019-0198-yDOI Listing

Publication Analysis

Top Keywords

cryptomeria japonica
8
amplicon sequencing
8
gene flow
8
omote-sugi ura-sugi
8
morphological traits
8
local adaptation
8
climatic changes
8
divergence time
8
inferring demographic
4
demographic history
4

Similar Publications

Cytotoxic Natural Products from (Thunb. ex L.) D.Don.

Int J Mol Sci

December 2024

Department of Chemistry and Centre for Pharmacy, University of Bergen, N-5007 Bergen, Norway.

is a commercially important tree native to Japan. The tree belongs to the ancient genus and has found important uses as a medicinal plant, as well as a main source of timber in Japan. In recent years, there has been an increased interest in discovering extended uses of as a source of novel bioactive natural products with potential applications as lead compounds for active principles of future drugs.

View Article and Find Full Text PDF

The selection of plant genotypes characterized by wellness and stable growth under drought-stress conditions amid ongoing climate change is an important challenge in forest tree breeding. The introduction of molecular markers will enable efficient selection of breeding materials that are resistant to drought stress in forest trees as well as in crop species. Japanese cedar, Cryptomeria japonica, the most dominant forest species in Japan, grows well on mesic sites and is characterized by intraspecific variation in its drought-stress response.

View Article and Find Full Text PDF

Brown rot fungi, the major decomposers in the boreal coniferous forests, cause a unique wood decay pattern but many aspects of brown rot decay mechanisms remain unclear. In this study, decayed wood samples were prepared by cultivation of the brown rot fungi Gloeophyllum trabeum and Coniophora puteana on Japanese coniferous wood of Cryptomeria japonica, and the cutting planes were prepared using broad ion beam (BIB) milling, which enables observation of intact wood, in addition to traditional microtome sections. Samples were observed using field-emission SEM revealing that areas inside the end walls of ray parenchyma cells were the first to be degraded.

View Article and Find Full Text PDF
Article Synopsis
  • Planted forests are important for carbon sequestration but are predicted to decrease in area and age in Japan.
  • A study estimated the net ecosystem production (NEP) of Japanese cedar forests under four management scenarios, showing a decline in NEP from 2010 to 2050 or 2090, with an average decrease of -21% expected.
  • The research suggests different management strategies for cedar forests in southern and northern Japan, indicating the need for effective approaches to maintain ecosystem services and mitigate climate change impacts.
View Article and Find Full Text PDF

The Azorean forest operations and wood industry generate considerable foliage biomass residues that are used for local essential oil (EO) production. However, research on seasonal variation of EO remains scarce. In this study, the EOs from fresh Azorean foliage (Az-CJF) collected in autumn (Aut) and spring (Spr) were obtained via hydrodistillation and investigated for their physical properties, yield, chemical composition, and bioactivities.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!