ATP depletion and succinate accumulation during ischemia lead to oxidative damage to mammalian organs upon reperfusion. In contrast, freshwater turtles survive weeks of anoxia at low temperatures without suffering from oxidative damage upon reoxygenation, but the mechanisms are unclear. To determine how turtles survive prolonged anoxia, we measured ~80 metabolites in hearts from cold-acclimated (5 °C) turtles exposed to 9 days anoxia and compared the results with those for normoxic turtles (25 °C) and mouse hearts exposed to 30 min of ischemia. In turtles, ATP and ADP decreased to new steady-state levels during fasting and cold-acclimation and further with anoxia, but disappeared within 30 min of ischemia in mouse hearts. High NADH/NAD ratios were associated with succinate accumulation in both anoxic turtles and ischemic mouse hearts. However, succinate concentrations and succinate/fumarate ratios were lower in turtle than in mouse heart, limiting the driving force for production of reactive oxygen species (ROS) upon reoxygenation in turtles. Furthermore, we show production of ROS from succinate is prevented by re-synthesis of ATP from ADP. Thus, maintenance of an ATP/ADP pool and low succinate accumulation likely protects turtle hearts from anoxia/reoxygenation injury and suggests metabolic interventions as a therapeutic approach to limit ischemia/reperfusion injury in mammals.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6391391 | PMC |
http://dx.doi.org/10.1038/s41598-019-39836-5 | DOI Listing |
Plants (Basel)
January 2025
Department of Turf Science and Engineering, College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
White clover () is an excellent perennial cold-season ground-cover plant for municipal landscaping and urban greening. It is, therefore, widely distributed and utilized throughout the world. However, poor salt tolerance greatly limits its promotion and application.
View Article and Find Full Text PDFMetabolites
January 2025
Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350019, China.
Unlabelled: Seed storability is a crucial agronomic trait and indispensable for the safe storage of rice seeds and grains. Nevertheless, the metabolite mechanisms governing rice seed storability under natural conditions are still poorly understood.
Methods: Therefore, the seed storage tolerance of global rice core germplasms stored for two years under natural aging conditions were identified, and two extreme groups with different seed storabilities from the rice group were analyzed using the UPLC-MS/MS metabolomic strategy.
Food Chem X
January 2025
College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China.
The quality and flavor of Liuyang Douchi are usually closely related to the metabolites compostion. This work described the metabolic profiles of Liuyang douchi during fermentation. Obvious hydrolysis of carbohydrates, proteins and slight lipids degradation were observed.
View Article and Find Full Text PDFJ Control Release
January 2025
State Key Laboratory of Separation Membranes and Membrane Processes & Key Laboratory of Hollow Fiber Membrane Materials and Membrane Processes (MOE) & Tianjin Key Laboratory of Hollow Fiber Membrane Materials and Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China. Electronic address:
Clinical benefits of immunotherapy in colorectal cancer (CRC) are limited due to the low immunogenicity and immunosuppressive tumor microenvironment. Fusobacterium nucleatum (Fn) is discovered to colonize CRC tumors and dampen immunotherapy by fostering an immunosuppressive TME. Herein, a controllable "Shielding-deshielding" N-acetylgalactosamine (GalNAc)-derived photothermal nanotherapeutic is developed to mediate cascade targeting toward tumor and intratumoral Fn for enhanced photothermal-immunotherapy.
View Article and Find Full Text PDFPlant Physiol Biochem
January 2025
Botany Department, Federal University of Pelotas, Capão Do Leão, RS, 96160-000, Brazil.
Waterlogging is a significant stressor for crops, particularly in lowland regions where soil conditions exacerbate the problem. Waterlogged roots experience hypoxia, disrupting oxidative phosphorylation and triggering metabolic reorganization to sustain energy production. Here, we investigated the metabolic aspects that differentiate two soybean sister lines contrasting for waterlogging tolerance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!