We have found a memristive characteristic of an α-GTO thin-film device. The α-GTO thin-film layer is deposited using radio-frequency (RF) magnetron sputtering at room temperature and sandwiched between the Al top and bottom electrodes. It is found that the hysteresis loop of the flowing current (I) and applied voltage (V) characteristic becomes larger and stable after the one hundredth cycle. The electrical resistances for the high-resistance state (HRS) and low-resistance state (LRS) are clearly different and relatively stable. Based on various analysis, it is suggested that the memristive characteristic is due to the chemical reaction between the SnO and SnO blocked by AlO on the Al bottom electrode. It is marvelous that the memristive characteristic can be realized by such common materials, simple structures, and easy fabrication.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6391444 | PMC |
http://dx.doi.org/10.1038/s41598-019-39549-9 | DOI Listing |
J Phys Chem Lett
January 2025
Key Laboratory of Atomic and Molecular Physics and Functional Materials of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China.
Research on memristive devices to seamlessly integrate and replicate the dynamic behaviors of biological synapses will illuminate the mechanisms underlying parallel processing and information storage in the human brain, thereby affording novel insights for the advancement of artificial intelligence. Here, an artificial electric synapse is demonstrated on a one-step Mo-selenized MoSe memristor, having not only long-term stable resistive switching characteristics (reset 0.51 ± 0.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Physics, Indian Institute of Technology Guwahati, Guwahati 781039, India.
The discovery of moiré physics in two-dimensional (2D) materials has opened new avenues for exploring unique physical and chemical properties induced by intralayer/interlayer interactions. This study reports the experimental observation of moiré patterns in 2D bismuth oxyselenide (BiOSe) nanosheets grown through one-pot chemical reaction methods and a sonication-assisted layer separations technique. Our findings demonstrate that these moiré patterns result from the angular stacking of the nanosheets at various twist angles, leading to the formation of moiré superlattices (MSLs) with distinct periodicities.
View Article and Find Full Text PDFPhilos Trans A Math Phys Eng Sci
January 2025
Peter Gruenberg Institut (PGI-7), Forschungszentrum Juelich GmbH, Juelich, Germany.
The thirst for more efficient computational paradigms has reignited interest in computation in memory (CIM), a burgeoning topic that pivots on the strengths of more versatile logic systems. Surging ahead in this innovative milieu, multi-valued logic systems have been identified as possessing the potential to amplify storage density and computation efficacy. Notably, ternary logic has attracted widespread research owing to its relatively lower computational and storage complexity, offering a promising alternative to the traditional binary logic computation.
View Article and Find Full Text PDFCogn Neurodyn
December 2025
School of Electronics and Information, Hangzhou Dianzi University, Hangzhou, 310018 China.
Psychological studies have demonstrated that the music can affect memory by triggering different emotions. Building on the relationships among music, emotion, and memory, a memristor-based emotion associative learning circuit is designed by utilizing the nonlinear and non-volatile characteristics of memristors, which includes a music judgment module, three emotion generation modules, three emotional homeostasis modules, and a memory module to implement functions such as learning, second learning, forgetting, emotion generation, and emotional homeostasis. The experimental results indicate that the proposed circuit can simulate the learning and forgetting processes of human under different music circumstances, demonstrate the feasibility of memristors in biomimetic circuits, verify the impact of music on memory, and provide a foundation for in-depth research and application development of the interaction mechanism between emotion and memory.
View Article and Find Full Text PDFChaos
January 2025
School of Electronic Information, Central South University, Changsha 410083, China.
Memristors are commonly used to introduce various chaotic systems and can be used to enhance their chaotic characteristics. However, due to the strict construction conditions of Hamiltonian systems, there has been limited research on the development of memristive Hamiltonian conservative chaotic systems (MHCCSs). In this work, a method for constructing three-terminal memristors is proposed, and the three-terminal memristors are incorporated into the Hamiltonian system, resulting in the development of a class of n-D MHCCS.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!