Tumors comprise cancer stem cells (CSCs) and their heterogeneous progeny within a stromal microenvironment. In response to transforming growth factor-β (TGF-β), epithelial and carcinoma cells undergo a partial or complete epithelial-mesenchymal transition (EMT), which contributes to cancer progression. This process is seen as reversible because cells revert to an epithelial phenotype upon TGF-β removal. However, we found that prolonged TGF-β exposure, mimicking the state of in vivo carcinomas, promotes stable EMT in mammary epithelial and carcinoma cells, in contrast to the reversible EMT induced by a shorter exposure. The stabilized EMT was accompanied by stably enhanced stem cell generation and anticancer drug resistance. Furthermore, prolonged TGF-β exposure enhanced mammalian target of rapamycin (mTOR) signaling. A bitopic mTOR inhibitor repressed CSC generation, anchorage independence, cell survival, and chemoresistance and efficiently inhibited tumorigenesis in mice. These results reveal a role for mTOR in the stabilization of stemness and drug resistance of breast cancer cells and position mTOR inhibition as a treatment strategy to target CSCs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6746178 | PMC |
http://dx.doi.org/10.1126/scisignal.aau8544 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!