We investigated the effects of glial cell line-derived neurotrophic factor (GDNF) in Parkinson's disease, using intermittent intraputamenal convection-enhanced delivery via a skull-mounted transcutaneous port as a novel administration paradigm to potentially afford putamen-wide therapeutic delivery. This was a single-centre, randomized, double-blind, placebo-controlled trial. Patients were 35-75 years old, had motor symptoms for 5 or more years, and presented with moderate disease severity in the OFF state [Hoehn and Yahr stage 2-3 and Unified Parkinson's Disease Rating Scale motor score (part III) (UPDRS-III) between 25 and 45] and motor fluctuations. Drug delivery devices were implanted and putamenal volume coverage was required to exceed a predefined threshold at a test infusion prior to randomization. Six pilot stage patients (randomization 2:1) and 35 primary stage patients (randomization 1:1) received bilateral intraputamenal infusions of GDNF (120 µg per putamen) or placebo every 4 weeks for 40 weeks. Efficacy analyses were based on the intention-to-treat principle and included all patients randomized. The primary outcome was the percentage change from baseline to Week 40 in the OFF state (UPDRS-III). The primary analysis was limited to primary stage patients, while further analyses included all patients from both study stages. The mean OFF state UPDRS motor score decreased by 17.3 ± 17.6% in the active group and 11.8 ± 15.8% in the placebo group (least squares mean difference: -4.9%, 95% CI: -16.9, 7.1, P = 0.41). Secondary endpoints did not show significant differences between the groups either. A post hoc analysis found nine (43%) patients in the active group but no placebo patients with a large clinically important motor improvement (≥10 points) in the OFF state (P = 0.0008). 18F-DOPA PET imaging demonstrated a significantly increased uptake throughout the putamen only in the active group, ranging from 25% (left anterior putamen; P = 0.0009) to 100% (both posterior putamina; P < 0.0001). GDNF appeared to be well tolerated and safe, and no drug-related serious adverse events were reported. The study did not meet its primary endpoint. 18F-DOPA imaging, however, suggested that intermittent convection-enhanced delivery of GDNF produced a putamen-wide tissue engagement effect, overcoming prior delivery limitations. Potential reasons for not proving clinical benefit at 40 weeks are discussed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6391602PMC
http://dx.doi.org/10.1093/brain/awz023DOI Listing

Publication Analysis

Top Keywords

parkinson's disease
12
stage patients
12
active group
12
intermittent intraputamenal
8
glial cell
8
cell line-derived
8
line-derived neurotrophic
8
neurotrophic factor
8
convection-enhanced delivery
8
patients
8

Similar Publications

The aetiology of Alzheimer's disease (AD) and Parkinson's disease (PD) are unknown and tend to manifest at a late stage in life; even though these neurodegenerative diseases are caused by different affected proteins, they are both characterized by neuroinflammation. Links between bacterial and viral infection and AD/PD has been suggested in several studies, however, few have attempted to establish a link between fungal infection and AD/PD. In this study we adopted a nanopore-based sequencing approach to characterise the presence or absence of fungal genera in both human brain tissue and cerebrospinal fluid (CSF).

View Article and Find Full Text PDF

Neurodegeneration in Huntington's disease (HD) is accompanied by the aggregation of fragments of the mutant huntingtin protein, a biomarker of disease progression. A particular pathogenic role has been attributed to the aggregation-prone huntingtin exon 1 (HTTex1), generated by aberrant splicing or proteolysis, and containing the expanded polyglutamine (polyQ) segment. Unlike amyloid fibrils from Parkinson's and Alzheimer's diseases, the atomic-level structure of HTTex1 fibrils has remained unknown, limiting diagnostic and treatment efforts.

View Article and Find Full Text PDF

Circuit-based biomarkers distinguishing the gradual progression of Lewy pathology across synucleinopathies remain unknown. Here, we show that seeding of α-synuclein preformed fibrils in mouse dorsal striatum and motor cortex leads to distinct prodromal-phase cortical dysfunction across months. Our findings reveal that while both seeding sites had increased cortical pathology and hyperexcitability, distinct differences in electrophysiological and cellular ensemble patterns were crucial in distinguishing pathology spread between the two seeding sites.

View Article and Find Full Text PDF

Isolated rapid eye movement sleep behavior disorder is a prodrome of α-synucleinopathies. Using positron emission tomography, we assessed changes in Parkinson's disease-related motor and cognitive metabolic networks and caudate/putamen dopaminergic input in a 4-year longitudinal imaging study of 13 male subjects with this disorder. We also correlated times to phenoconversion with baseline network expression in an independent validation sample.

View Article and Find Full Text PDF

Introduction: Alzheimer's disease (AD), primary age-related tauopathy (PART), and chronic traumatic encephalopathy (CTE) all feature hyperphosphorylated tau (p-tau)-immunoreactive neurofibrillary degeneration, but differ in neuroanatomical distribution and progression of neurofibrillary degeneration and amyloid beta (Aβ) deposition.

Methods: We used Nanostring GeoMx Digital Spatial Profiling to compare the expression of 70 proteins in neurofibrillary tangle (NFT)-bearing and non-NFT-bearing neurons in hippocampal CA1, CA2, and CA4 subregions and entorhinal cortex of cases with autopsy-confirmed AD (n = 8), PART (n = 7), and CTE (n = 5).

Results: There were numerous subregion-specific differences related to Aβ processing, autophagy/proteostasis, inflammation, gliosis, oxidative stress, neuronal/synaptic integrity, and p-tau epitopes among these different disorders.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!