Effects of nanoscale electric fields on the histology of liver cell dysplasia.

Nanomedicine (Lond)

Biology Department, School of Sciences & Engineering, American University in Cairo, New Cairo 11835, Egypt.

Published: March 2019

Unlabelled: Cells electrical fields have a significant role in cell function.

Aim: The current study examined the effects of nanoscale electric fields generated by magneto-electric nanoparticles (MENs) on precancerous liver tissue.

Methods & Results: A total of 30 nm MENs synthesized by sol-gel method were tested in vitro on HepG2 cells and in vivo on liver cell dysplasia in mice, which were exposed to 50 Hz 2 mT for 2 weeks, +/- MENs. MENs with alternating field (AF) reversed liver cells dysplastic features. In vitro cytotoxicity assay showed high lethal dose (LD 50) of 1.4 mg/ml. We also report on the expression of alpha-fetoprotein and cytochrome C.

Conclusion: MEN-generated nanoscale electric fields have significant biological effects on precancerous liver cells.

Download full-text PDF

Source
http://dx.doi.org/10.2217/nnm-2018-0260DOI Listing

Publication Analysis

Top Keywords

nanoscale electric
12
electric fields
12
effects nanoscale
8
liver cell
8
cell dysplasia
8
precancerous liver
8
liver cells
8
liver
5
fields
4
fields histology
4

Similar Publications

Nanoscale surface topography is an effective approach in modulating cell-material interactions, significantly impacting cellular and nuclear morphologies, as well as their functionality. However, the adaptive changes in cellular metabolism induced by the mechanical and geometrical microenvironment of the nanotopography remain poorly understood. In this study, we investigated the metabolic activities in cells cultured on engineered nanopillar substrates by using a label-free multimodal optical imaging platform.

View Article and Find Full Text PDF

To satisfy the needs of the current technological world that demands high performance and efficiency, a deep understanding of the whole fabrication process of electronic devices based on low-dimensional materials is necessary for rapid prototyping of devices. The fabrication processes of such nanoscale devices often include exposure to an electron beam. A field effect transistor (FET) is a core device in current computation technology, and FET configuration is also commonly used for extraction of electronic properties of low-dimensional materials.

View Article and Find Full Text PDF

Mechanically Stable and Damage Resistant Freestanding Ultrathin Silver Nanowire Films with Closely Packed Crossed-Lamellar Structure.

Precis Chem

December 2024

Department of Chemistry, New Cornerstone Science Laboratory, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China.

One-dimensional (1D) functional nanowires are widely used as nanoscale building blocks for assembling advanced nanodevices due to their unique functionalities. However, previous research has mainly focused on nanowire functionality, while neglecting the structural stability and damage resistance of nanowire assemblies, which are critical for the long-term operation of nanodevices. Biomaterials achieve excellent mechanical stability and damage resistance through sophisticated structural design.

View Article and Find Full Text PDF

In the era of the Internet of Things (IoT), the transmission of medical reports in the form of scan images for collaborative diagnosis is vital for any telemedicine network. In this context, ensuring secure transmission and communication is necessary to protect medical data to maintain privacy. To address such privacy concerns and secure medical images against cyberattacks, this research presents a robust hybrid encryption framework that integrates quantum, and classical cryptographic methods.

View Article and Find Full Text PDF

In this work, we present an experimental approach for monitoring the temperature of submicrometric, real-time operating electrical circuits using luminescence thermometry. For this purpose, we utilized lanthanide-doped up-converting nanocrystals as nanoscale temperature probes, which, combined with a highly sensitive confocal photoluminescence microscope, enabled temperature monitoring with spatial resolution limited only by the diffraction of light. To validate our concept, we constructed a simple model of an electrical microcircuit based on a single silver nanowire with a diameter of approximately 100 nm and a length of about 50 µm, whose temperature increase was induced by electric current flow.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!