Here we report the first synthesis of a family of novel heterocyclic compounds based on a 5-dihydropyrazolo[3',4':5,6]pyrano[3,4- b]pyridine core. In the course of our drug discovery programs, we had need to access the previously unknown 5-dihydropyrazolo[3',4':5,6]pyrano[3,4- b]pyridine core. Initial attempts required long reaction times, which led to degradation and side products. Reaction optimization identified a Pd-catalyzed, microwave-assisted C-H heteroarylation protocol for the rapid, general, and high yielding synthesis of this tricyclic core (as well as related analogs) suitable to drive optimization efforts.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.joc.9b00144DOI Listing

Publication Analysis

Top Keywords

c-h heteroarylation
8
5-dihydropyrazolo[3'4'56]pyrano[34- b]pyridine
8
b]pyridine core
8
preparation 15-dihydropyrazolo[3'4'56]pyrano[34-
4
15-dihydropyrazolo[3'4'56]pyrano[34- b]pyridines
4
b]pyridines microwave-assisted
4
microwave-assisted palladium-catalyzed
4
palladium-catalyzed regioselective
4
regioselective c-h
4
heteroarylation electron-rich
4

Similar Publications

General procedures for the rhodium-catalyzed annulation of aryl/heteroaryl -pivaloyl hydroxamic acids and norbornadiene have been developed. Employing norbornadiene as an acetylene equivalent enables utilization of diverse heterocyclic substrates for this transformation which fail to react or undergo competitive Lossen rearrangement under previously reported conditions. Microwave heating significantly reduces reaction times compared to conventional protocols and allows a one-step process to be realized.

View Article and Find Full Text PDF
Article Synopsis
  • A new method for C-H functionalization of heteroaryl compounds is introduced, which involves a process called dearomative addition followed by hydrogen autotransfer.
  • This process starts with the hydroruthenation of dienes to create allylruthenium nucleophiles, leading to branched C-C coupling products through addition and β-hydride elimination.
  • The study also details the formation of enantiomerically enriched heteroarylethyl alcohols and amines through oxidative cleavage and dynamic kinetic asymmetric reduction, supported by density functional theory calculations linking regioselectivities to molecular factors.
View Article and Find Full Text PDF

A cascade C-H activation/2-fold annulation of 2-aryloxazolines with pyridotriazoles has been achieved employing Rh-catalysis to afford heteroaryl-tethered oxazoloisoquinolinones. The synergistic annulations, functional group tolerance, and late-stage skeletal editing of the bioactive scaffolds are the salient practical features.

View Article and Find Full Text PDF

Complementary methods toward the selective functionalization of indole and oxindole frameworks employing an alternative strategy in heteroaryl C-H functionalizations are presented herein. This work focuses on a catalyst-controlled, site selective C-H activation/functionalization of 3-acyl indoles, wherein an amide serves as a robust and versatile directing group capable of undergoing concomitant 1,2-acyl translocation/C-H functionalization in the presence of a Rh/Ag co-catalysts to provide the cross-coupled adducts in high yields. In contrast, the use of Ir/Ag catalysts subverted the 1,2-acyl migration to afford the corresponding C2-functionalized products in good to excellent yields.

View Article and Find Full Text PDF

Heteroaryl-Directed Iridium-Catalyzed Enantioselective C-H Alkenylations of Secondary Alcohols.

J Am Chem Soc

January 2025

Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, United Kingdom.

Under iridium-catalyzed conditions, 2-aza-aryl-substituted secondary alcohols undergo C(sp)-H addition reactions to alkynes to provide alkenylated tertiary alcohols. The processes occur with very high regio- and enantioselectivity. An analogous addition to styrene is shown to provide a prototype C(sp)-H alkylation process.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!