Here we report the first synthesis of a family of novel heterocyclic compounds based on a 5-dihydropyrazolo[3',4':5,6]pyrano[3,4- b]pyridine core. In the course of our drug discovery programs, we had need to access the previously unknown 5-dihydropyrazolo[3',4':5,6]pyrano[3,4- b]pyridine core. Initial attempts required long reaction times, which led to degradation and side products. Reaction optimization identified a Pd-catalyzed, microwave-assisted C-H heteroarylation protocol for the rapid, general, and high yielding synthesis of this tricyclic core (as well as related analogs) suitable to drive optimization efforts.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.joc.9b00144 | DOI Listing |
Org Lett
January 2025
Pfizer Oncology Medicinal Chemistry, 10770 Science Center Drive, San Diego, California 92121, United States.
General procedures for the rhodium-catalyzed annulation of aryl/heteroaryl -pivaloyl hydroxamic acids and norbornadiene have been developed. Employing norbornadiene as an acetylene equivalent enables utilization of diverse heterocyclic substrates for this transformation which fail to react or undergo competitive Lossen rearrangement under previously reported conditions. Microwave heating significantly reduces reaction times compared to conventional protocols and allows a one-step process to be realized.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemistry, University of Texas at Austin, Austin 78712, Texas, United States.
Chem Commun (Camb)
January 2025
Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India.
A cascade C-H activation/2-fold annulation of 2-aryloxazolines with pyridotriazoles has been achieved employing Rh-catalysis to afford heteroaryl-tethered oxazoloisoquinolinones. The synergistic annulations, functional group tolerance, and late-stage skeletal editing of the bioactive scaffolds are the salient practical features.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA.
Complementary methods toward the selective functionalization of indole and oxindole frameworks employing an alternative strategy in heteroaryl C-H functionalizations are presented herein. This work focuses on a catalyst-controlled, site selective C-H activation/functionalization of 3-acyl indoles, wherein an amide serves as a robust and versatile directing group capable of undergoing concomitant 1,2-acyl translocation/C-H functionalization in the presence of a Rh/Ag co-catalysts to provide the cross-coupled adducts in high yields. In contrast, the use of Ir/Ag catalysts subverted the 1,2-acyl migration to afford the corresponding C2-functionalized products in good to excellent yields.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, United Kingdom.
Under iridium-catalyzed conditions, 2-aza-aryl-substituted secondary alcohols undergo C(sp)-H addition reactions to alkynes to provide alkenylated tertiary alcohols. The processes occur with very high regio- and enantioselectivity. An analogous addition to styrene is shown to provide a prototype C(sp)-H alkylation process.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!