Conservation and Relevance of Pharmacophore Point Types.

J Chem Inf Model

Center for Bioinformatics , Saarland University, Campus E2.1 , 66123 Saarbruecken , Germany.

Published: April 2019

Pharmacophore models in general use a variety of features for distinct chemical characteristics, such as hydrogen-bond properties, lipohilicity, and ionizability. Usually, features have to match onto their identical type. To clarify if this stringent one-to-one assignment is justified, we investigated a set of 581 unique ligands from the BindingDB with known orientation inside the respective binding pockets and conducted a statistical analysis of the likelihood of observed exchanges in between the pharmacophore features, respectively their degree of conservation. To find out if certain features are obsolete, we derived a ranking to determine the most relevant ones. We found that the most conserved one-to-one feature is the negative ionizable (acids), followed by hydrogen-bond donor, positive ionizable (basic nitrogens), hydrogen-bond acceptor, aromatic, nonaromatic π-systems, and other lipophilic characteristics. The most likely exchanges were found between carboxylate groups and hydrogen-bond acceptors and likewise between basic nitrogens and hydrogen-bond donors, which reflects the characteristics of Lewis acids and bases. Exchanges between hydrogen-bond donors and hydrogen-bond acceptors are hardly more likely than by chance. The kind of target (e.g., kinase, phosphatase, protease, phosphodiesterase, nuclear receptor, metal-containing, or transmembrane protein) did not show substantial influence on the degree of conservation. The relevance of the actual pharmacophore features was found to be strongly dependent on the applied ranking scheme. Mutual information ranks all hydrophobic features as least important, whereas the aromatic feature is put into second place by using a geometric series. Both ranking schemes see the negative ionizable feature of higher significance than the positively ionizable feature.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jcim.8b00757DOI Listing

Publication Analysis

Top Keywords

conservation relevance
8
pharmacophore features
8
degree conservation
8
negative ionizable
8
basic nitrogens
8
nitrogens hydrogen-bond
8
hydrogen-bond acceptors
8
hydrogen-bond donors
8
ionizable feature
8
hydrogen-bond
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!