Acrylamide has been classified as a "Group 2A carcinogen" (probably carcinogenic to humans) by the International Agency for Research on Cancer. The carcinogenicity of acrylamide is attributed to its well-recognized genotoxicity. In the present study, we investigated the effect of acrylamide on epigenetic alterations in mice. Female B6C3F1 mice received acrylamide in drinking water for 28 days, at doses previously used in a 2 year cancer bioassay (0, 0.0875, 0.175, 0.35, and 0.70 mM), and the genotoxic and epigenetic effects were investigated in lungs, a target organ for acrylamide carcinogenicity, and livers, a nontarget organ. Acrylamide exposure resulted in a dose-dependent formation of N7-(2-carbamoyl-2-hydroxyethyl)guanine and N3-(2-carbamoyl-2-hydroxyethyl)adenine in liver and lung DNA. In contrast, the profiles of global epigenetic alterations differed between the two tissues. In the lungs, acrylamide exposure resulted in a decrease of histone H4 lysine 20 trimethylation (H4K20me3), a common epigenetic feature of human cancer, while in the livers, there was increased acetylation of histone H3 lysine 27 (H3K27ac), a gene transcription activating mark. Treatment with 0.70 mM acrylamide also resulted in substantial alterations in the DNA methylation and whole transcriptome in the lungs and livers; however, there were substantial differences in the trends of DNA methylation and gene expression changes between the two tissues. Analysis of differentially expressed genes showed a marked up-regulation of genes and activation of the gene transcription regulation pathway in livers, but not lungs. This corresponded to increased histone H3K27ac and DNA hypomethylation in livers, in contrast to hypermethylation and transcription silencing in lungs. Our results demonstrate that acrylamide induced global epigenetic alterations independent of its genotoxic effects, suggesting that epigenetic events may determine the organ-specific carcinogenicity of acrylamide. Additionally this study provides strong support for the importance of epigenetic alterations, in addition to genotoxic events, in the mechanism of carcinogenesis induced by genotoxic chemical carcinogens.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.chemrestox.9b00020 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot 7610001, Israel.
Malignant gliomas are heterogeneous tumors, mostly incurable, arising in the central nervous system (CNS) driven by genetic, epigenetic, and metabolic aberrations. Mutations in isocitrate dehydrogenase (IDH1/2) enzymes are predominantly found in low-grade gliomas and secondary high-grade gliomas, with IDH1 mutations being more prevalent. Mutant-IDH1/2 confers a gain-of-function activity that favors the conversion of a-ketoglutarate (α-KG) to the oncometabolite 2-hydroxyglutarate (2-HG), resulting in an aberrant hypermethylation phenotype.
View Article and Find Full Text PDFDifferentiation of antigen-activated B cells into pro-proliferative germinal center (GC) B cells depends on the activity of the transcription factors MYC and BCL6, and the epigenetic writers DOT1L and EZH2. GCB-like Diffuse Large B Cell Lymphomas (GCB-DLBCLs) arise from GCB cells and closely resemble their cell of origin. Given the dependency of GCB cells on DOT1L and EZH2, we investigated the role of these epigenetic regulators in GCB-DLBCLs and observed that GCB-DLBCLs synergistically depend on the combined activity of DOT1L and EZH2.
View Article and Find Full Text PDFJ Exp Bot
January 2025
School of Biosciences, University of Birmingham, Birmingham, UK.
Plants host a range of DNA elements capable of self-replication. These molecules, usually associated to the activity of transposable elements or viruses, are found integrated in the genome or in the form of extrachromosomal DNA. The activity of these elements can impact genome plasticity by a variety of mechanisms, including the generation of structural variants, the shuffling of regulatory or coding DNA sequences across the genome, and DNA endoduplication.
View Article and Find Full Text PDFCancer Med
January 2025
Department of Pediatric Oncology/Hematology, Charité-Universitätsmedizin Berlin, Berlin, Germany.
Background: CREB binding protein (CREBBP) is a key epigenetic regulator, altered in a fifth of relapsed cases of acute lymphoblastic leukemia (ALL). Selectively targeting epigenetic signaling may be an effective novel therapeutic approach to overcome drug resistance. Anti-tumor effects have previously been demonstrated for GSK-J4, a selective H3K27 histone demethylase inhibitor, in several animal models of cancers.
View Article and Find Full Text PDFCurr Med Chem
January 2025
Department of Infectious Diseases, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, 471000, Henan, China.
Gastrointestinal tumors, including colorectal and liver cancer, are among the most prevalent and lethal solid tumors. These malignancies are characterized by worsening prognoses and increasing incidence rates. Traditional therapeutic approaches often prove ineffective.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!