Background: Even though obesity surgery normalizes circulating testosterone concentrations in males with obesity-associated secondary hypogonadism, its impact on spermatogenesis remains controversial. We aimed to evaluate sperm characteristics in obese men after bariatric surgery as well as changes in reproductive hormones.
Methods: Twenty severely obese men (body mass index (BMI) ≥ 35 kg/m) were evaluated before and 2 years after bariatric surgery. The serum was assayed for insulin, leptin, kisspeptin, and inhibin B, among other hormones. Homeostasis model assessment of insulin resistance (HOMA-IR) was estimated. We used World Health Organization reference values for sperm analysis.
Results: After surgery, serum total testosterone, calculated free testosterone, inhibin B, and kisspeptin increased, whereas fasting insulin, HOMA-IR, and leptin concentrations decreased. Despite these improvements, sperm volume showed a small decrease after surgery, while the rest of sperm characteristics remained mostly unchanged. Abnormal sperm concentration persisted in 60% of the patients.
Conclusions: Sperm characteristics may not improve after bariatric surgery despite the beneficial changes of reproductive hormones.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11695-019-03798-4 | DOI Listing |
Cell Biosci
January 2025
Center for Reproduction and Genetics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China.
Over the past two decades, the study of sperm-borne small non-coding RNAs (sncRNAs) has garnered substantial growth. Once considered mere byproducts during germ cell maturation, these sncRNAs have now been recognized as crucial carriers of epigenetic information, playing a significant role in transmitting acquired traits from paternal to offspring, particularly under environmental influences. A growing body of evidence highlights the pivotal role of these sncRNAs in facilitating epigenetic inheritance across generations.
View Article and Find Full Text PDFBMC Vet Res
January 2025
Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran.
Background: In the cryopreservation process, rooster spermatozoa are vastly sensitive to reactive oxygen species (ROS). This study aimed to investigate the effects of Lake extender supplemented via Cysteamine (CYS) on the quality and fertility characteristics of rooster semen during the cryopreservation process.
Methods: Semen samples were collected from 10 proved Ross-308 roosters, diluted and cryopreserved in the Lake extender which contained 0, 1, 2, 4, and 8 mM of CYS (C-0, C-1, C-2, C-4, and C-8, respectively).
Theriogenology
January 2025
Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada.
Cryopreservation of rooster semen is a reproductive technology carried out to boost genetic gain and productivity in commercial flocks of chicken. However, semen freezing significantly reduces the quality and fertilizing potential of spermatozoa. This study examined cryoprotective effects of the mitochondria-targeted antioxidant mitoquinol mesylate added to the freezing extender by assessing post-thaw characteristics of rooster sperm.
View Article and Find Full Text PDFEpigenetics Chromatin
January 2025
Department of Maternal‑Fetal Biology, National Center for Child Health and Development, Tokyo, 157‑8535, Japan.
Background: DNA methylation plays a crucial role in mammalian development. While methylome changes acquired in the parental genomes are believed to be erased by epigenetic reprogramming, accumulating evidence suggests that methylome changes in sperm caused by environmental factors are involved in the disease phenotypes of the offspring. These findings imply that acquired sperm methylome changes are transferred to the embryo after epigenetic reprogramming.
View Article and Find Full Text PDFBiol Res
January 2025
School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China.
Background: Protein palmitoylation, a critical posttranslational modification, plays an indispensable role in various cellular processes, including the regulation of protein stability, mediation of membrane fusion, facilitation of intracellular protein trafficking, and participation in cellular signaling pathways. It is also implicated in the pathogenesis of diseases, such as cancer, neurological disorders, inflammation, metabolic disorders, infections, and neurodegenerative diseases. However, its regulatory effects on sperm physiology, particularly motility, remain unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!