Groundwater samples were collected from 3818 wells used for the community groundwater system (CGS) in the remote rural areas of South Korea and analyzed to determine radon concentrations. Radon concentrations varied with rock type, ranging from 0.1 to 2393.5 Bq/L with an average of 86.6 Bq/L and a median of 46.4 Bq/L. Among 10 geological units, the median CGS radon concentration was highest (59.6-103.0 Bq/L) in granite, and lower in sedimentary rocks (16.9-21.1 Bq/L) and porous volcanic rocks (17.6 Bq/L), respectively. Of the 3818 samples, 26.1% exceeded the World Health Organization (WHO) radon level limit of 100 Bq/L. The application of the natural radon reduction rate (26.5%) recently suggested by Yun et al. Applied Radiation and Isotopes, 126(1), 23-25 (2017) to the CGS water tank appeared to decrease exceedance of the WHO radon level limit to 20.2%. Because of the high radon concentrations in CGS groundwater in South Korea, the establishment of a radon level limit for drinking water is strongly recommended to ensure the health and safety of the people using CGS water.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10661-019-7301-yDOI Listing

Publication Analysis

Top Keywords

radon concentrations
16
south korea
12
radon level
12
level limit
12
radon
9
community groundwater
8
groundwater system
8
cgs water
8
cgs
5
concentrations community
4

Similar Publications

Radon Exposure and Gestational Diabetes.

JAMA Netw Open

January 2025

Department of Obstetrics and Gynecology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York.

Importance: Understanding environmental risk factors for gestational diabetes (GD) is crucial for developing preventive strategies and improving pregnancy outcomes.

Objective: To examine the association of county-level radon exposure with GD risk in pregnant individuals.

Design, Setting, And Participants: This multicenter, population-based cohort study used data from the Nulliparous Pregnancy Outcomes Study: Monitoring Mothers-to-Be (nuMoM2b) cohort, which recruited nulliparous pregnant participants from 8 US clinical centers between October 2010 and September 2013.

View Article and Find Full Text PDF

Indoor radon is a significant risk factor for the development of LC. This study aimed to identify potential biomarkers for LC risk in high background radiation areas using a metabolomics approach (UHPLC-HRMS). Based on the indoor radon activity concentration measurements in the Kong Khaek subdistrict, serum samples were collected from 45 nonsmoker or former smoker participants, comprising 15 LC patients and 30 matched healthy controls (low- and high-radon groups, respectively).

View Article and Find Full Text PDF

Identifying Predictors of Spatiotemporal Variations in Residential Radon Concentrations across North Carolina Using Machine Learning Analytics.

Environ Pollut

January 2025

Department of Population Health Sciences, Duke University, Durham, NC 27708, United States; Duke Cancer Institute, Duke University, Durham, NC 27708, United States.

Radon is a naturally occurring radioactive gas derived from the decay of uranium in the Earth's crust. Radon exposure is the leading cause of lung cancer among non-smokers in the US. Radon infiltrates homes through soil and building foundations.

View Article and Find Full Text PDF

The present study aimed to investigate the hydrogeochemical patterns and contamination of the radiogeology, especially radon activity, related to geothermal aquifer properties and to perform a risk assessment of annual effective doses covering all hydrothermal spring attractions in Southern Thailand. Radon is an established lung carcinogen; especially longer term exposure to radioactive radon through inhalation could be a cause of lung cancer risk. Altogether 22 hydrothermal spring samples were collected from the six hydrothermal provinces in Southern Thailand in early November of 2023.

View Article and Find Full Text PDF

This study assessed the geogenic radon potential using PECAME, an innovative tool designed to simultaneously measure soil-gas permeability and CO concentration - two key parameters for understanding radon transport in soil. Comparative field studies using the RADON-JOK device in various geological settings in Japan and Poland demonstrate the effectiveness of PECAME. These studies reveal a strong correlation between PECAME and RADON-JOK, with an R value of 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!