Treatment of 60S subunits from yeast ribosomes with dicarboxylic acid anhydrides (maleic, dimethylmaleic and tetrahydrophtalic), which introduces negatively-charged residues, is accompanied by substantial dissociation of protein components (35-55%). In contrast, acetic anhydride or cyanate, which introduce uncharged groups, cause practically no protein release, even after extensive modification. Therefore, in addition to blocking lysine-RNA interactions, a large change in the electric charge of the proteins appears to be necessary to obtain dissociation. These results seem to indicate that lysine residues are not essential to ribosome integrity, while arginine-RNA interactions should play an important role in the maintenance of ribosomal structure.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/BF00417595 | DOI Listing |
Nat Commun
January 2025
Klinik für Urologie und Zentrale Klinische Forschung, Klinikum der Universität Freiburg, Freiburg, Germany.
Prostate cancer (PCa) growth depends on de novo lipogenesis controlled by the mitochondrial pyruvate dehydrogenase complex (PDC). In this study, we identify lysine methyltransferase (KMT)9 as a regulator of PDC activity. KMT9 is localized in mitochondria of PCa cells, but not in mitochondria of other tumor cell types.
View Article and Find Full Text PDFNPJ Sci Food
January 2025
Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, the People's Republic of China, Shanghai, 201403, China.
The ENaC receptor acts as a taste receptor to recognize and perceive salty substances. This study explored the mechanisms by which the ENaC taste receptor recognizes and binds mushroom-derived salty peptides using molecular interaction and molecular simulation. The three subunits α, β, and γ of the ENaC taste receptor (SCNN1α, SCNN1β, and SCNN1γ) showed different recognition characteristics for the salty peptide.
View Article and Find Full Text PDFMol Genet Genomic Med
February 2025
Medical Genetics, Department of Precision Medicine, University of Campania 'Luigi Vanvitelli', Naples, Italy.
Background: Sensorineural hearing loss (SNHL) is a frequent manifestation of syndromic inherited retinal diseases (IRDs), exemplified by the very rare form of autosomal-dominant Leber congenital amaurosis with early onset deafness (LCAEOD; OMIM #617879). LCAEOD was first described in 2017 in four families segregating heterozygous missense mutations in TUBB4B, a gene encoding a β-tubulin isotype. To date, only eight more families with similar TUBB4B-associated sensorineural disease (SND) have been reported.
View Article and Find Full Text PDFJ Phys Chem B
January 2025
Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
The microbial aminotransferase enzyme DapC is vital for lysine biosynthesis in various Gram-positive bacteria, including . Characterization of the enzyme's conformational dynamics and identifying the key residues for ligand binding are crucial for the development of effective antimicrobials. This study employs atomistic simulations to explore and categorize the dynamics of DapC in comparison to other classes of aminotransferase.
View Article and Find Full Text PDFJ Chem Inf Model
January 2025
Department of Chemistry, Faculty of Science, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
Tau is a microtubule (MT)-associated protein that binds to and stabilizes the MTs of neurons. Due to its intrinsically disordered nature, it undergoes several post-translational modifications (PTMs) that are intricately linked to both the physiological and pathophysiological roles of Tau. Prior research has shown phosphorylation and O-GlcNAcylation to have contrasting effects on Tau aggregation; however, the precise molecular mechanisms and potential synergistic effects of these modifications remain elusive.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!