We report improved conductance by reducing the work function via incorporation of hydrogen into VO2 nanowires. The VO2 nanowires were prepared using the chemical vapor deposition method with V2O5 powder on silicon substrates at 850 °C. Hydrogenation was carried out using the high-pressure hydrogenation method. Raman spectroscopy confirmed that the incorporated hydrogen atoms resulted in a change in the lattice constant of the VO2 nanowires (NWs). To quantitatively measure the work function of the nanowires, Kelvin probe force microscopy (KPFM) was employed at ambient conditions. We found that the work function decreased with increasing H2 pressure, which also resulted in increased conductance. This is associated with hydrogen diffused into the VO2 that acts as a donor to elevate the Fermi level, which was also confirmed by KPFM. From these results, tuning of the reversible electrical properties of VO2 NWs, including the conductance and work function, can be achieved by incorporating hydrogen at relatively moderate temperatures.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c9nr00245f | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!