Herein, a mono-lacunary Keggin-type polyoxometalate (POM), [SiW11O39]8-, grafted with an azobenzene group through Sn ion bridging was prepared, and the formed organic-inorganic hybrid cluster was characterized via elemental analysis, NMR, TGA, and IR techniques. A vesicular structure of the hybrid cluster assembly in aqueous media was observed in the TEM image, and it dissociated in the presence of α-/β-, γ-cyclodextrins (α-/β-, γ-CDs); this dissociation was driven by the host-guest interactions. The monodispersed inclusion complex further reassembled into smaller micelles under irradiation with 365 nm light, and this transformation was reversibly controlled by alternating the irradiation with 450 nm light. Moreover, in the case of the POM-Azo/β-CD system, reassembly from the monodispersed state to the vesicular state was achieved by the addition of a competitive guest molecule. Thus, the reversible host-guest interactions combining reversible photoisomerization of the azobenzene group provided multiple ways to modulate the assembly and disassembly of the POM hybrid as well as the changes between different assemblies. The present study inspires the potential use of these kind of hybrid POMs in enhanced catalytic reactions and recycling.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c8dt05146a | DOI Listing |
Adv Sci (Weinh)
December 2024
CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, P. R. China.
Owing to their attractive antitumor effects, aminated fullerene derivatives are emerging as promising therapeutic drugs for cancer. However, their in vivo applications are severely limited due to cation toxicity. To address this problem, human heavy chain ferritin (HFn), possessing natural biocompatibility is utilized, to develop a novel supramolecular assembly drug delivery system.
View Article and Find Full Text PDFMol Cell
December 2024
Biotechnology Center, Center for Molecular and Cellular Bioengineering, TU Dresden, Dresden 01307 Saxony, Germany; Cluster of Excellence Physics of Life, TU Dresden, Dresden 01307 Saxony, Germany. Electronic address:
Ribonucleoprotein (RNP) granules have been linked to translation regulation and disease, but their assembly and regulatory mechanisms are not well understood. Here, we show that the RNA-binding protein G3BP1 preferentially interacts with unfolded RNA, driving the assembly of RNP granule-like condensates that establish RNA-RNA interactions. These RNA-RNA interactions limit the mobility and translatability of sequestered mRNAs and stabilize the condensates.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter, The State Key Laboratory of Structural Chemistry, 155 Yangqiao Road West, 350002, Fuzhou, CHINA.
Macrocycles represent one important class of functional molecules, and dynamic macrocycles with the potential of cleavability, adaptability, and topological conversion are challenging. Herein we report photoswitchable allosteric and topological control of dynamic covalent macrocycles and further the use in guest binding and mechanically interlocked molecules. The manipulation of competing ring-chain equilibria and bond formation/scission within reaction systems enabled light-induced structural regulation over dithioacetal and thioacetal dynamic bonds, accordingly realizing bidirectional switching between crown ether-like covalent macrocycles and their linear counterparts.
View Article and Find Full Text PDFACS Omega
December 2024
Cellular Computational and Biology Department, CIBIO, Laboratory for Artificial Biology, University of Trento, Via Sommarive 9, Povo 38123, Italy.
Dynamic soft matter systems composed of functionalized vesicles and liposomes are typically produced and then manipulated through external means, including the addition of exogenous molecules. In biology, natural cells possess greater autonomy, as their internal states are continuously updated, enabling them to effect higher order properties of the system. Therefore, a conceptual and technical gap exists between the natural and artificial systems.
View Article and Find Full Text PDFFront Immunol
December 2024
The Federal Medical Biological Agency (FMBA of Russia), Moscow, Russia.
COVID-19 is characterized by systemic pro-inflammatory shifts with the development of serious alterations in the functioning of the immune system. Investigations of the gene expression changes accompanying the infection state provide insight into the molecular and cellular processes depending on the sickness severity and virus variants. Severe Delta COVID-19 has been characterized by the appearance of a monocyte subset enriched for proinflammatory gene expression signatures and a shift in ligand-receptor interactions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!