Background: The high mortality rate of breast cancer is related to the occurrence of metastasis, a process that is promoted by tumor angiogenesis. MicroRNAs are small molecules of noncoding mRNA that play a key role in gene regulation and are directly involved in the progression and angiogenesis of various tumor types, including breast cancer. Several miRNAs have been described as promoters or suppressors angiogenesis and may be associated with tumor growth and metastasis. Melatonin is an oncostatic agent with a capacity of modifying the expression of innumerable genes and miRNAs related to cancer.
Objective: The aim of this study was to evaluate the role of melatonin and the tumor suppressor miR- 148a-3p on angiogenesis of breast cancer.
Method: MDA-MB-231 cells were treated with melatonin and modified with the overexpression of miR-148a-3p. The relative quantification in real-time of miR-148a-3p, IGF-IR and VEGF was performed by real-time PCR. The protein expression of these targets was performed by immunocytochemistry and immunohistochemistry. Survival, migration and invasion rates of tumor cells were evaluated. Finally, the xenograft model of breast cancer was performed to confirm the role of melatonin in the tumor.
Results: The melatonin was able to increase the gene level of miR-148a-3p and decreased the gene and protein expression of IGF-1R and VEGF, both in vitro and in vivo. In addition, it also had an inhibitory effect on the survival, migration and invasion of breast tumor cells.
Conclusion: Our results confirm the role of melatonin in the regulation of miR-148a-3p and decrease of angiogenic factors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2174/2211536608666190219095426 | DOI Listing |
Cancer Cell Int
December 2024
Department of Ultrasound, Chongqing General Hospital, Chongqing University, Chongqing, 401147, China.
Gas therapy represents a promising strategy for cancer treatment, with nitric oxide (NO) therapy showing particular potential in tumor therapy. However, ensuring sufficient production of NO remains a significant challenge. Leveraging ultrasound-responsive nanoparticles to promote the release of NO is an emerging way to solve this challenge.
View Article and Find Full Text PDFClin Breast Cancer
December 2024
MKA Breast Cancer Clinic, Tepe Prime, Ankara, Turkey. Electronic address:
Trends Mol Med
December 2024
Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, PA, USA. Electronic address:
Genetic and epigenetic defects of the p53 system have previously been associated with resistance to CDK4/6 inhibitors in women with HR breast cancer. Recent data from Kudo et al. demonstrate that CDK2-targeting agents may offer an effective strategy to circumvent such resistance by enforcing cellular senescence downstream of RBL2 dephosphorylation.
View Article and Find Full Text PDFSci Bull (Beijing)
December 2024
Breast Cancer Center, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China. Electronic address:
Am J Pathol
December 2024
Department of Computer Science, Faculty of Engineering Sciences, University College London, Gower Street, London, WC1E 6BT, United Kingdom.
Understanding the tumor hypoxic microenvironment is crucial for grasping tumor biology, clinical progression, and treatment responses. This study presents a novel application of AI in computational histopathology to evaluate hypoxia in breast cancer. Weakly Supervised Deep Learning (WSDL) models can accurately detect morphological changes associated with hypoxia in routine Hematoxylin and Eosin (H&E) whole slide images (WSI).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!