Background: Terminalia arjuna (TA) has been reported and explored traditionally for its cardiotonic properties while the mechanism of antihypertensive effect of TA has not been clearly reported.
Method: The oxidative stress is a major cause for hypertension, hence different extracts of TA having variable marker yield were evaluated for their antihypertensive effect in buthionine sulfoxamine (BSO) induced oxidative stress based model. Soxhlet extraction (SE), room temperature extraction (RTE), microwave assisted extraction (MAE), and ultrasound assisted extraction (USAE) were quantitatively estimated for marker compounds arjunolic acid and arjunic acid through HPTLC.
Results: The hypertension was induced using buthionine sulfoxamine (2 mmol/kg b.w. i.p.) and results suggested that the MAE and USAE showed better recovery of systolic blood pressure (110.33±0.10 and 118.33±0.10) and GSH level (3.62±0.07 nmoles/mL and 3.22±0.13 nmoles/mL), respectively as compared to the positive control group treated with ascorbic acid (Systolic BP: 119.67±0.10, GSH level: 3.11±0.10 nmoles/mL). The RTE and SE also showed a decrease in hypertension but were having moderate effect as compared with the standard positive control.
Conclusion: The total percentage yield, the yield of the marker compounds arjunolic and arjunic acid, the IC50 values for antioxidant activity as well as the antihypertensive effect were in order: MAE>USAE>SE>RTE that suggested the role of biomarkers arjunolic acid and arjunic acid in reversing the effect of buthionine sulfoxamine.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2174/1389201020666190222185209 | DOI Listing |
Inflammopharmacology
January 2025
Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, ElKasr Elaini Street, Cairo, 11562, Egypt.
The currently approved drugs for Alzheimer's disease (AD) are only for symptomatic treatment in the early stages of the disease but they could not halt the neurodegeneration, additionally, the safety profile of the recently developed immunotherapy is a big issue. This review aims to explain the importance of the drugs repurposing technique and strategy to develop therapy for AD. We illustrated the biological alterations in the pathophysiology of AD including the amyloid pathology, the Tau pathology, oxidative stress, mitochondrial dysfunction, neuroinflammation, glutamate-mediated excitotoxicity, insulin signaling impairment, wingless-related integration site/β-catenin signaling, and autophagy.
View Article and Find Full Text PDFNeurochem Res
January 2025
Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China.
Alzheimer's disease (AD) is a central nervous system degenerative disease with a stealthy onset and a progressive course characterized by memory loss, cognitive dysfunction, and abnormal psychological and behavioral symptoms. However, the pathogenesis of AD remains elusive. An increasing number of studies have shown that oligodendrocyte progenitor cells (OPCs) and oligodendroglial lineage cells (OLGs), especially OPCs and mature oligodendrocytes (OLGs), which are derived from OPCs, play important roles in the pathogenesis of AD.
View Article and Find Full Text PDFMol Biol Rep
January 2025
Department of Endocrinology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, People's Republic of China.
Background: Tubular injury triggered by hyperglycemia is an important pathological characteristic in diabetic nephropathy (DN). Accumulated advanced glycation end products and their precursor methylglyoxal (MGO), contribute to the development of DN. Carnosine has been shown to prevent the development of DN but the underlying mechanism still needs to be studied in depth.
View Article and Find Full Text PDFNeurochem Res
January 2025
Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China.
Depression is a common and complex neuropsychiatric disorder affecting people of all ages worldwide, associated with high rates of relapse and disability. Neohesperidin (NEO) is a dietary flavonoid with applications in therapeutics; however, its effects on depressive-like behavior remain unknown. Here, we evaluated the effects of NEO on depressive-like behavior induced by chronic and unpredictable mild stress (CUMS).
View Article and Find Full Text PDFAging Dis
December 2024
Department of Sports Science, College of Natural Science, Jeonbuk National University, Jeonju 54896, Korea.
The negative effects of particulate matter up to 2.5 μm in diameter (PM) and their mediating mechanisms have been studied in various tissues. However, little is known about the mechanism and long-term tracking underlying the sex-dependent effects of PM on skeletal muscle system modulation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!