Magneto-Seebeck effect in CoFeAl/MgO/CoFeAl: first-principles calculations.

Phys Chem Chem Phys

Institute for Computational Materials Science, School of Physics and Electronics, Henan University, Kaifeng 475004, People's Republic of China.

Published: March 2019

The magneto-Seebeck effect has recently attracted considerable attention because of its novel fundamental physics and future potential application in spintronics. Herein, employing first-principles calculations and the spin-resolved Boltzmann transport theory, we have systematically investigated the electronic structures and spin-related transport properties of Co2FeAl/MgO/Co2FeAl multilayers with parallel (P) and anti-parallel (AP) magnetic alignment. Our results indicate that the sign of tunneling magneto-Seebeck (TMS) value with Co2/O termination is consistent with that of the measured experimental result although its value (-221%) at room temperature is smaller than the experimental one (-95%). The calculated spin-Seebeck coefficients of the Co2/O termination with P and AP states and the FeAl/O termination with the AP state are all larger than other typical Co2MnSi/MgO/Co2MnSi heterostructures. By analyzing the geometries, electronic structures, and magnetic behaviors of two different terminations (Co2/O and FeAl/O terminations), we find that the two terminations in the interface region form anti-bonding and bonding states, reconstructing the energy gap, changing the magnetic moment of O atoms, and improving the spin-polarization (-82%). This phenomenon can be ascribed to the charge transfer and hybridization between Co/Fe 3d and O 2p states, which also results in a bowknot orbital shape of Co atoms with Co2/O termination and an ankle shape of Co atoms with FeAl/O termination far away from the interface. Moreover, there are spin-splitting transmission gaps with the Co2/O-termination around the Fermi level, while the transmission gaps with the FeAl/O-termination are closed and thus show a typical metallic character. Our findings will guide the experimental design of magneto-Seebeck devices for future spintronic applications.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c8cp07697aDOI Listing

Publication Analysis

Top Keywords

co2/o termination
12
first-principles calculations
8
electronic structures
8
feal/o termination
8
shape atoms
8
transmission gaps
8
termination
5
magneto-seebeck
4
magneto-seebeck cofeal/mgo/cofeal
4
cofeal/mgo/cofeal first-principles
4

Similar Publications

Magneto-Seebeck effect in CoFeAl/MgO/CoFeAl: first-principles calculations.

Phys Chem Chem Phys

March 2019

Institute for Computational Materials Science, School of Physics and Electronics, Henan University, Kaifeng 475004, People's Republic of China.

The magneto-Seebeck effect has recently attracted considerable attention because of its novel fundamental physics and future potential application in spintronics. Herein, employing first-principles calculations and the spin-resolved Boltzmann transport theory, we have systematically investigated the electronic structures and spin-related transport properties of Co2FeAl/MgO/Co2FeAl multilayers with parallel (P) and anti-parallel (AP) magnetic alignment. Our results indicate that the sign of tunneling magneto-Seebeck (TMS) value with Co2/O termination is consistent with that of the measured experimental result although its value (-221%) at room temperature is smaller than the experimental one (-95%).

View Article and Find Full Text PDF

Charge density study of a mixed-valence tri-cobalt compound, Co3(μ-admtrz)4(μ-OH)2(CN)6·2H2O (1) (admtrz = 3,5-dimethyl-4-amino-1,2,4-triazole), is investigated based on high resolution X-ray diffraction data and density functional theory (DFT) calculations. The molecular structure of this compound contains three cobalt atoms in a linear fashion, where two terminal ones are Co(III) at a low-spin (LS) state and a central one is Co(II) at a high-spin (HS) state with a total spin quantum number, S(total), of 3/2. It is centrosymmetric with the center of inversion located at the central Co atom (Co2).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!