Stress responses upon starvation and exposure to bacteria in the ant .

PeerJ

Organismal and Evolutionary Biology Research Programme/Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.

Published: February 2019

Organisms are simultaneously exposed to multiple stresses, which requires regulation of the resistance to each stress. Starvation is one of the most severe stresses organisms encounter, yet nutritional state is also one of the most crucial conditions on which other stress resistances depend. Concomitantly, organisms often deploy lower immune defenses when deprived of resources. This indicates that the investment into starvation resistance and immune defenses is likely to be subject to trade-offs. Here, we investigated the impact of starvation and oral exposure to bacteria on survival and gene expression in the ant . Of the three bacteria used in this study, only increased the mortality of the ants, whereas exposure to and alleviated the effects of starvation. Both exposure to bacteria and starvation induced changes in gene expression, but in different directions depending on the species of bacteria used, as well as on the nutritional state of the ants.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6383555PMC
http://dx.doi.org/10.7717/peerj.6428DOI Listing

Publication Analysis

Top Keywords

exposure bacteria
12
starvation exposure
8
nutritional state
8
immune defenses
8
gene expression
8
starvation
6
bacteria
5
stress responses
4
responses starvation
4
exposure
4

Similar Publications

Cyanobacteria are important model organisms for studying the process of photosynthesis and the effects of environmental stress factors. This study aimed to identify the inhibitory sites of NaCl in the whole photosynthetic electron transport in Synechocystis sp. PCC 6803 WT cells by using multiple biophysical tools.

View Article and Find Full Text PDF

Unlabelled: Antibiotic resistance is a global crisis that stems from the use of antibiotics as an essential part of modern medicine. Understanding how antibiotic resistance is controlled among cells in bacterial populations will provide insights into how antibiotics shape microbial communities. Here, we describe patterns of gene expression that arise from growth on a surface either in isolation or under subinhibitory chloramphenicol exposure.

View Article and Find Full Text PDF

is a major causative agent of streptococcosis in Nile tilapia () and understanding its etiology is important to ensure the sustainable development of global tilapia farming. Our research group recently observed contrasting disease patterns in animals infected with two different serotypes (Ib and III). To better understand the basis for these divergent responses, we analyzed the brain transcriptome of Nile tilapia following bacterial exposure.

View Article and Find Full Text PDF

Background: Parasitic infections are known to suppress the cell mediated immunity that protects against tuberculosis. The status of parasitic infections among bacteriologically confirmed tuberculosis patients and their household contacts in Cameroon is not well established. This study aimed at reporting the status of parasitic infections in TB patients and their household contacts with keen interest in associated risk factors to disease exposure.

View Article and Find Full Text PDF

Environmental antibiotic residues (EARs) and antibiotic-resistant bacteria (ARB) are known to contribute to global antimicrobial resistance (AMR). This study investigated EAR levels in selected wells, river, abattoir wastewater, bottled water and sachet water from Ede, Nigeria. Ecological risk quotient (RQ) and health risk (Hazard quotient) of the levels of these EARs, ARB and multidrug-resistant bacteria (MDR) with their antibiotic resistance were calculated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!