Within isolated and fragmented populations, species interactions such as predation can cause shifts in community structure and demographics in tidal marsh ecosystems. It is critical to incorporate species interactions into our understanding when evaluating the effects of sea-level rise and storm surges on tidal marshes. In this study, we hypothesize that avian predators will increase their presence and hunting activities during high tides when increased inundation makes their prey more vulnerable. We present evidence that there is a relationship between tidal inundation depth and time of day on the presence, abundance, and behavior of avian predators. We introduce predation pressure as a combined probability of predator presence related to water level. Focal surveys were conducted at four tidal marshes in the San Francisco Bay, California where tidal inundation patterns were monitored across 6 months of the winter. Sixteen avian predator species were observed. During high tide at Tolay Slough marsh, ardeids had a 29-fold increase in capture attempts and 4 times greater apparent success rate compared with low tide. Significantly fewer raptors and ardeids were found on low tides than on high tides across all sites. There were more raptors in December and January and more ardeids in January than in other months. Ardeids were more prevalent in the morning, while raptors did not exhibit a significant response to time of day. Modeling results showed that raptors had a unimodal response to water level with a peak at 0.5 m over the marsh platform, while ardeids had an increasing response with water level. We found that predation pressure is related to flooding of the marsh surface, and short-term increases in sea levels from high astronomical tides, sea-level rise, and storm surges increase vulnerability of tidal marsh wildlife.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6374721 | PMC |
http://dx.doi.org/10.1002/ece3.4792 | DOI Listing |
Sci Adv
January 2025
Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden.
Coastal ecosystems play a major role in marine carbon budgets, but substantial uncertainties remain in the sources and fluxes of coastal carbon dioxide (CO). Here, we assess when, where, and how submarine groundwater discharge (SGD) releases CO to shallow coastal ecosystems. Time-series observations of dissolved CO and radon (Rn, a natural groundwater tracer) across 40 coastal systems from 14 countries revealed large SGD-derived CO fluxes.
View Article and Find Full Text PDFGlob Chang Biol
January 2025
CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, China.
Coastal wetlands contain very large carbon (C) stocks-termed as blue C-and their management has emerged as a promising nature-based solution for climate adaptation and mitigation. The interactions among sources, pools, and molecular compositions of soil organic C (SOC) within blue C ecosystems (BCEs) remain elusive. Here, we explore these interactions along an 18,000 km long coastal line of salt marshes, mangroves, and seagrasses in China.
View Article and Find Full Text PDFEnviron Monit Assess
January 2025
Department of Fisheries Resource Management, Faculty of Fisheries Science, Kerala University of Fisheries and Ocean Studies, Kochi, Kerala, 682506, India.
Wetlands are dynamic ecosystems vital for sustaining ecological health and development at regional and global scales. Geospatial tools have emerged as essential for managing wetland ecosystems. This study assessed the spatiotemporal dynamics of water spread in the Point Calimere Wetland, a coastal Ramsar site located along the Bay of Bengal, India, from 1984 to 2023.
View Article and Find Full Text PDFSci Total Environ
January 2025
State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China. Electronic address:
Wetlands, one of the largest source of methane (CH) on Earth, are undergoing extensive disturbance globally, resulting in profound impacts on global changes. This study conducted a comprehensive global meta-analysis of field studies to assess the effects of wetland disturbance on CH emissions and the key factors influencing these changes. Our analysis indicates that while CH emissions generally decrease following wetland disturbance, the global warming potential does not necessarily diminish compared to that of natural wetlands.
View Article and Find Full Text PDFYing Yong Sheng Tai Xue Bao
October 2024
School of Fishery, Zhejiang Ocean University, Zhoushan 316000, Zhejiang, China.
Mangrove forests are crucial coastal "blue carbon" ecosystems, known for their significant carbon sequestration capabilities to "carbon neutrality" and mitigating global climate change. We used Pb radioisotope dating to analyze sedimentation rates in the sediments of the Oujiang River Estuary mangrove forest, to calculate organic carbon burial rate, and to assess the characteristics and sources of organic carbon burial. The results showed that the average total organic carbon content in the sediments was 1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!