Localization of the Epileptogenic Zone Using High Frequency Oscillations.

Front Neurol

Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada.

Published: February 2019

For patients with drug-resistant focal epilepsy, surgery is the therapy of choice in order to achieve seizure freedom. Epilepsy surgery foremost requires the identification of the epileptogenic zone (EZ), defined as the brain area indispensable for seizure generation. The current gold standard for identification of the EZ is the seizure-onset zone (SOZ). The fact, however that surgical outcomes are unfavorable in 40-50% of well-selected patients, suggests that the SOZ is a suboptimal biomarker of the EZ, and that new biomarkers resulting in better postsurgical outcomes are needed. Research of recent years suggested that high-frequency oscillations (HFOs) are a promising biomarker of the EZ, with a potential to improve surgical success in patients with drug-resistant epilepsy without the need to record seizures. Nonetheless, in order to establish HFOs as a clinical biomarker, the following issues need to be addressed. First, evidence on HFOs as a clinically relevant biomarker stems predominantly from retrospective assessments with visual marking, leading to problems of reproducibility and reliability. Prospective assessments of the use of HFOs for surgery planning using automatic detection of HFOs are needed in order to determine their clinical value. Second, disentangling physiologic from pathologic HFOs is still an unsolved issue. Considering the appearance and the topographic location of presumed physiologic HFOs could be immanent for the interpretation of HFO findings in a clinical context. Third, recording HFOs non-invasively via scalp electroencephalography (EEG) and magnetoencephalography (MEG) is highly desirable, as it would provide us with the possibility to translate the use of HFOs to the scalp in a large number of patients. This article reviews the literature regarding these three issues. The first part of the article focuses on the clinical value of invasively recorded HFOs in localizing the EZ, the detection of HFOs, as well as their separation from physiologic HFOs. The second part of the article focuses on the current state of the literature regarding non-invasively recorded HFOs with emphasis on findings and technical considerations regarding their localization.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6378911PMC
http://dx.doi.org/10.3389/fneur.2019.00094DOI Listing

Publication Analysis

Top Keywords

hfos
13
epileptogenic zone
8
patients drug-resistant
8
epilepsy surgery
8
detection hfos
8
physiologic hfos
8
article focuses
8
recorded hfos
8
localization epileptogenic
4
zone high
4

Similar Publications

Objective: This study aimed to investigate two key aspects of scalp high-frequency oscillations (HFOs) in pediatric focal lesional epilepsy: (1) the stability of scalp HFO spatial distribution across consecutive nights, and (2) the variation in scalp HFO rates in response to changes in antiseizure medication (ASM).

Methods: We analyzed 81 whole-night scalp electroencephalography (EEG) recordings from 20 children with focal lesional epilepsy. We used a previously validated automated HFO detector to assess scalp HFO rates (80-250 Hz) during non-rapid eye movement (NREM) sleep.

View Article and Find Full Text PDF

Hydrofluoroolefins (HFOs) and hydrochlorofluoroolefins (HCFOs) are the leading synthetic replacements for compounds successively banned by the Montreal Protocol and amendments. HFOs and HCFOs readily decompose in the atmosphere to form fluorinated carbonyls, including CFCHO in yields of up to 100%, which are then photolyzed. A long-standing issue, critical for the transition to safe industrial gases, is whether atmospheric decomposition of CFCHO yields any quantity of CHF (HFC-23), which is one of the most environmentally hazardous greenhouse gases.

View Article and Find Full Text PDF

Medication-refractory focal epilepsy poses a significant challenge, with approximately 30% of patients ineligible for surgery due to the involvement of eloquent cortex in the epileptogenic network. For such patients with limited surgical options, electrical neuromodulation represents a promising alternative therapy. In this study, we investigate the potential of non-invasive temporal interference (TI) electrical stimulation to reduce epileptic biomarkers in patients with epilepsy by comparing intracerebral recordings obtained before, during, and after TI stimulation, and to those recorded during low and high kHz frequency (HF) sham stimulation.

View Article and Find Full Text PDF

: Chronic migraine with medication-overuse headache (CM-MOH) is neurophysiologically characterized by increased cortical excitability with sensitization at both the thalamocortical and the cortical levels. It is unclear whether the increased cortical excitability could be reverted by medication withdrawal (i.e.

View Article and Find Full Text PDF

Development of in vitro hair pigmentation model using hair follicle organoids.

J Biosci Bioeng

December 2024

Faculty of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa 240-8501, Japan; Kanagawa Institute of Industrial Science and Technology, 3-2-1 Sakado Takatsu-ku, Kawasaki, Kanagawa 213-0012, Japan. Electronic address:

Hair color is formed through a series of processes such as melanin synthesis and storage in melanosomes, transfer from melanocytes, and reception by hair matrix cells in the hair bulb. Because gray hair is caused by the deterioration of a single or multiple of these processes, understanding the mechanisms responsible for these processes is crucial for developing therapeutic strategies. Recently, a robust approach for preparing hair follicle organoids (HFOs) was reported, in which hair follicle morphogenesis, including hair shaft elongation, was tracked in vitro.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!