As an important application of functional biomaterials, neural probes have contributed substantially to studying the brain. Bioinspired and biomimetic strategies have begun to be applied to the development of neural probes, although these and previous generations of probes have had structural and mechanical dissimilarities from their neuron targets that lead to neuronal loss, neuroinflammatory responses and measurement instabilities. Here, we present a bioinspired design for neural probes-neuron-like electronics (NeuE)-where the key building blocks mimic the subcellular structural features and mechanical properties of neurons. Full three-dimensional mapping of implanted NeuE-brain interfaces highlights the structural indistinguishability and intimate interpenetration of NeuE and neurons. Time-dependent histology and electrophysiology studies further reveal a structurally and functionally stable interface with the neuronal and glial networks shortly following implantation, thus opening opportunities for next-generation brain-machine interfaces. Finally, the NeuE subcellular structural features are shown to facilitate migration of endogenous neural progenitor cells, thus holding promise as an electrically active platform for transplantation-free regenerative medicine.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6474791 | PMC |
http://dx.doi.org/10.1038/s41563-019-0292-9 | DOI Listing |
Binocular vision requires that the brain integrate information coming from each eye. These images are combined (fused) to generate a meaningful composite image. Differences between images, within a range, provide useful information about depth (stereopsis).
View Article and Find Full Text PDFNeuroimage
January 2025
Department of Genetics, Harvard Medical School, Boston, MA, USA; Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA. Electronic address:
Left-right asymmetry of the human brain is widespread through its anatomy and function. However, limited microscopic understanding of it exists, particularly for anatomical asymmetry where there are few well-established animal models. In humans, most brain regions show subtle, population-average regional asymmetries in thickness or surface area, alongside a macro-scale twisting called the cerebral petalia in which the right hemisphere protrudes anteriorly past the left.
View Article and Find Full Text PDFSensors (Basel)
December 2024
CMEMS-UMinho, University of Minho, 4800-058 Guimarães, Portugal.
In biomedical research, telemetry is used to take automated physiological measurements wirelessly from animals, as it reduces their stress and allows recordings for large data collection over long periods. The ability to transmit high-throughput data from an in-body device (e.g.
View Article and Find Full Text PDFNeuron
January 2025
Center for Lifespan Psychology, Max Planck Institute for Human Development, Lentzeallee 94, 14195 Berlin, Germany; Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Lentzeallee 94, 14195 Berlin, Germany and Max Planck UCL Centre for Computational Psychiatry and Ageing Research, 10-12 Russell Square, London, WC1B 5Eh, UK. Electronic address:
The cognitive neuroscience of human aging seeks to identify neural mechanisms behind the commonalities and individual differences in age-related behavioral changes. This goal has been pursued predominantly through structural or "task-free" resting-state functional neuroimaging. The former has elucidated the material foundations of behavioral decline, and the latter has provided key insight into how functional brain networks change with age.
View Article and Find Full Text PDFJ Neural Eng
January 2025
Department of Physiology and Department of Electrical and Computer System Engineering, Monash University - Clayton Campus, Wellington Rd, Melbourne, Victoria, 3800, AUSTRALIA.
Development of cortical visual prostheses requires optimization of evoked responses to electrical stimulation to reduce charge requirements and improve safety, efficiency, and efficacy. One promising approach is timing stimulation to the local field potential (LFP), where action potentials have been found to occur preferentially at specific phases. To assess the relationship between electrical stimulation and the phase of the LFP, we recorded action potentials from primary (V1) and secondary (V2) visual cortex in marmosets while delivering single-pulse electrical microstimulation at different phases of the local field potential.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!