Inherited photoreceptor degeneration in humans constitutes a major cause of irreversible blindness in the world. They comprise various diseases, but retinitis pigmentosa is the most frequently observed. Retinitis pigmentosa is commonly limited to the eye, where there is progressive photoreceptor degeneration, rods and secondarily cones. The mechanisms of cone and rod degeneration continue to be investigated, since most of the mutations causing retinitis pigmentosa affect rods and thus, the secondary death of cones is an intriguing question but, ultimately, the cause of blindness. Understanding the mechanisms of rod and cone degeneration could help us to develop therapies to stop or, at least, slow down the degeneration process. Secondary cone degeneration has been attributed to the trophic dependence between rods and cones, but microglial cell activation could also have a role. In this review, based on previous work carried out in our laboratory in early stages of photoreceptor degeneration in two animal models of retinitis pigmentosa, we show that microglial cell activation is observed prior to the the initiation of photoreceptor death. We also show that there is an increase of the retinal microglial cell densities and invasion of the outer retinal layers by microglial cells. The inhibition of the microglial cells improves photoreceptor survival and morphology, documenting a role for microglial cells in photoreceptor degeneration. Furthermore, these results indicate that the modulation of microglial cell reactivity can be used to prevent or diminish photoreceptor death in inherited photoreceptor degenerations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6425827 | PMC |
http://dx.doi.org/10.4103/1673-5374.251204 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!