Indepth studies of protein-protein interactions are essential for discovering the molecular mechanisms and the biological context of protein functions. Even though previous study on the purification of SPIN1 interacting protein complex has shown Spindlin docking protein (SPIN.DOC) as the most abundant interacting protein partner; the study on the molecular function of SPIN.DOC is limited. Since the role of SPIN1 has been previously documented as a histone code reader and transcriptional coactivator of Wnt signaling, SPIN.DOC may probably involve in epigenetic regulation and Wnt signaling. This study aims to purify SPIN.DOC interacting protein complex and characterize the molecular function of SPIN.DOC. The finding of this study revealed that the suppression of SPIN.DOC expression in HEK293 cells by shRNA, slightly destabilized SPIN1 without any change in its chromatin localization. However, knockdown of SPIN1 decreased the expression and chromatin localization of SPIN.DOC. Nevertheless, overexpression of SPIN.DOC increased the expression and chromatin localization of SPIN1 but no change in the SPIN.DOC protein expression and chromatin localization when SPIN1 is overexpressed. TOPflash reporter assays revealed that SPIN.DOC regulates gene expression in Wnt signaling pathway and act as transcriptional repressor. Further, we show that C-terminal deleted mutant of SPIN.DOC is unable to interact with SPIN1. Unlike the wild type SPIN.DOC which acts as transcriptional repressor, overexpression of C-terminal deletion mutant activates Wnt signaling suggesting that SPIN.DOC-SPIN1 complex may act as transcriptional repressor. Overall, our data revealed new molecular functions of SPIN.DOC.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2019.02.096DOI Listing

Publication Analysis

Top Keywords

wnt signaling
20
chromatin localization
16
spindoc
14
interacting protein
12
expression chromatin
12
transcriptional repressor
12
spindlin docking
8
docking protein
8
protein spindoc
8
spin1
8

Similar Publications

In the mammalian ureters, the lamina propria presents as a prominent layer of connective tissue underneath the urothelium. Despite its important structural and signaling functions, little is known how the lamina propria develops. Here, we show that in the murine ureter, the lamina propria arises at late fetal stages and massively increases by fibrocyte proliferation and collagen deposition after birth.

View Article and Find Full Text PDF

This study investigated the anti-inflammatory effects of water-dispersible hesperetin (WD-Hpt) in an endotoxin-induced uveitis (EIU) rat model. The rats were orally administered 10, 25, or 50 mg/kg WD-Hpt immediately after lipopolysaccharide (LPS) injection at the concentration of 200 μg. Clinical scores, cellular inflammation, the aqueous humor (ApH) protein concentration, as well as the levels of tumor necrosis factor (TNF)-α, cyclooxygenase (COX)-2 and inducible NO synthase (iNOS) in AqH, and histopathological grades were assessed.

View Article and Find Full Text PDF

Mechanisms and structure-activity relationships of natural polysaccharides as potential anti-osteoporosis agents: A review.

Int J Biol Macromol

January 2025

Nanjing University of Chinese Medicine/National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing 210029, China; Jiangsu Province Key Laboratory of High Technology Research, Nanjing 210029, China; Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing 210023, China. Electronic address:

In recent years, polysaccharides derived from natural sources have garnered significant attention due to their safety and potential anti-osteoporotic effects. This review provides a comprehensive overview of the sources, distribution, structures, and mechanisms of anti-osteoporosis polysaccharides, as well as an investigation into their structure-activity relationships. Over thirty distinct, homogenous polysaccharides with anti-osteoporosis properties have been extracted from natural sources, primarily categorized as glucans, fructans, galactomannans, glucomannans, and various other heteropolysaccharides.

View Article and Find Full Text PDF

Asiatic acid methyl ester, a new asiaticoside derivative, induces osteogenic differentiation of hPDLCs.

Arch Oral Biol

January 2025

Pharmaceutical Sciences and Technology Program, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand; Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand; Center of Excellent in Natural Products and Nanoparticles (NP2), Chulalongkorn University, Bangkok, Thailand.

Objective: Asiaticoside has the capacity to induce osteogenic differentiation of human periodontal ligament cells (hPDLCs) through Wnt (Wingless-related integration site) signaling. A modified chemical structure (by removing glycoside side chain), referred to as asiatic acid methyl ester (AA1), has been constructed and evaluated for its capacity to induce osteogenic differentiation.

Design: hPDLCs viability was determined by MTT assay.

View Article and Find Full Text PDF

Asymmetric cell division (ACD) allows daughter cells of a polarized mother to acquire different developmental fates. In , the Wnt/β-catenin Asymmetry (WβA) pathway regulates many embryonic and larval ACDs; here, a Wnt gradient induces an asymmetric distribution of Wnt signaling components within the dividing mother cell. One terminal nuclear effector of the WβA pathway is the transcriptional activator SYS-1/β-catenin.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!