Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Pyrolysis offers the possibility to convert waste tires into liquid and gaseous fractions as well as a carbon-rich solid (CBp), which contains the original carbon black (CB) and the inorganic compounds used in tire manufacture. Whilst both liquid and gaseous fractions can be valorized without further processing, there is a general consensus that CBp needs to be improved before it can be considered a commercial product, seriously penalizing the pyrolysis process profitability. In this work, the CBp produced in a continuous pyrolysis process was demineralized (chemical leaching) with the aim of recovering the CB trapped into the CBp and thus, producing a standardized CB product for commercial purposes. The demineralization process was conducted by using cheap and common reagents (HCl and NaOH). In this sense, the acid treatment removed most of the mineral matter contained in the CBp and concentration was the main parameter controlling the demineralization process. An ash content of 4.9 wt% was obtained by using 60 min of soaking time, 60 °C of temperature, 10 mL/g of reagent/CBp ratio and HCl 4 M. The demineralized CBp (dCBp) showed a carbon content of 92.9 wt%, while the FRX analysis indicated that SiO is the major component into the ash. The BET surface area was 76.3 m/g, and textural characterizations (SEM/EDX and TEM) revealed that dCBp is composed by primary particles lower than 100 nm. Although dCBp showed a low structure, the surface chemistry was rich in surface acidic groups. Finally, dCBp was used in Styrene Butadiene Rubber (SBR) compounding, probing its technical feasibility as substitute of commercial CB N550.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.wasman.2019.01.016 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!