The possible influence of growth hormone-releasing factor (GHRF) on epithelial cell proliferation in the digestive tract was investigated. Fasted young rats received five hourly subcutaneous injections of either GHRF or saline. They were killed 6, 12, or 18 h after the initial injection and 45 min after [3H]thymidine pulse labeling. At the time of death, blood was taken to determine circulating growth hormone and gastrin levels. After radioautography, DNA synthetic and mitotic activities were estimated in the fundic, antral, duodenal, jejunal, and colonic mucosae. Growth hormone-releasing factor significantly increased labeling indices 6, 12, and 18 h after the initial injection in fundic mucosa, and 6 and 18 h after injection in antral and duodenal mucosae. Furthermore, GHRF significantly increased mitotic indices at 12 h in fundic mucosa and at 12 and 18 h in jejunal mucosa. No effect was seen in the colon. At the three checkpoint times, circulating growth hormone showed no change, but plasma gastrin was increased in the rats treated with GHRF as compared with controls. However, whether the reported stimulatory effect of the GHRF on target cells is direct or indirect remains to be determined.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/0016-5085(86)91119-4 | DOI Listing |
Rev Endocr Metab Disord
January 2025
Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Biomedical Research Building, 1501 N.W. 10th Avenue, Room 908, Miami, FL, 33136, USA.
Growth hormone (GH)-releasing hormone (GHRH), a hypothalamic peptide initially characterized for its role in GH regulation, has gained increasing attention due to its GH-independent action on peripheral physiology, including that of the cardiovascular system. While its effects on the peripheral vasculature are still under investigation, GHRH and synthetic agonists have exhibited remarkable receptor-mediated cardioprotective properties in preclinical models. GHRH and its analogs enhance myocardial function by improving contractility, reducing oxidative stress, inflammation, and offsetting pathological remodeling.
View Article and Find Full Text PDFJCEM Case Rep
February 2025
Clinica Medica 3, Department of Medicine-DIMED, University Hospital of Padova, Padova 35128, Italy.
Growth hormone (GH) secretion by the pituitary is regulated by stimulatory and inhibitory pathways such as growth hormone releasing hormone (GHRH) and somatostatin, respectively, being also modulated by different neurotransmitters acting at the hypothalamic/pituitary level. The pineal gland hormone melatonin regulates GH secretion in many mammals, including humans, although its role in modulating GH secretion has been debated. We describe the case of a young woman chronically taking melatonin for sleep disturbances, referring to her general practitioner for flushing that appeared just after starting melatonin intake.
View Article and Find Full Text PDFCureus
December 2024
Department of Medical Affairs, Dr. Reddy's Laboratories, Hyderabad, IND.
This research aims to optimize adjuvant ovarian function suppression (OFS) for premenopausal Indian women with hormone receptor-positive (HR+) /human epidermal growth factor receptor 2-negative (HER2-) early breast cancer (eBC). To address specific challenges identified in clinical practice, a comprehensive questionnaire consisting of 21 statements was developed. These statements were reviewed and validated by a scientific committee, ensuring their accuracy and relevance to the study's objectives.
View Article and Find Full Text PDFBiomedicines
January 2025
Department of Pathophysiology, Albert Szent-Györgyi Medical School, University of Szeged, Szőkefalvi-Nagy Béla str. 6., 6720 Szeged, Hungary.
Ghrelin and growth hormone-releasing peptide 6 (GHRP-6) are peptides which can stimulate GH release, acting through the same receptor. Ghrelin and its receptor have been involved in reward sensation and addiction induced by natural and artificial drugs, including nicotine. The present study aimed to investigate the impacts of ghrelin and GHRP-6 on the horizontal and vertical activity in rats exposed to chronic nicotine treatment followed by acute nicotine withdrawal.
View Article and Find Full Text PDFRev Endocr Metab Disord
January 2025
Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Illinois at Chicago, Chicago, IL, USA.
This review focuses on our current understanding of how growth hormone releasing hormone (GHRH): 1) stimulates GH release and synthesis from pituitary growth hormone (GH)-producing cells (somatotropes), 2) drives somatotrope proliferation, 3) is negatively regulated by somatostatin (SST), GH and IGF1, 4) is altered throughout lifespan and in response to metabolic challenges, and 5) analogues can be used clinically to treat conditions of GH excess or deficiency. Although a large body of early work provides an underpinning for our current understanding of GHRH, this review specifically highlights more recent work that was made possible by state-of-the-art analytical tools, receptor-specific agonists and antagonists, high-resolution in vivo and ex vivo imaging and the development of tissue (cell) -specific ablation mouse models, to paint a more detailed picture of the regulation and actions of GHRH.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!