A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Using Low-Frequency Oscillations to Detect Temporal Lobe Epilepsy with Machine Learning. | LitMetric

The National Institutes of Health-sponsored Epilepsy Connectome Project aims to characterize connectivity changes in temporal lobe epilepsy (TLE) patients. The magnetic resonance imaging protocol follows that used in the Human Connectome Project, and includes 20 min of resting-state functional magnetic resonance imaging acquired at 3T using 8-band multiband imaging. Glasser parcellation atlas was combined with the FreeSurfer subcortical regions to generate resting-state functional connectivity (RSFC), amplitude of low-frequency fluctuations (ALFFs), and fractional ALFF measures. Seven different frequency ranges such as Slow-5 (0.01-0.027 Hz) and Slow-4 (0.027-0.073 Hz) were selected to compute these measures. The goal was to train machine learning classification models to discriminate TLE patients from healthy controls, and to determine which combination of the resting state measure and frequency range produced the best classification model. The samples included age- and gender-matched groups of 60 TLE patients and 59 healthy controls. Three traditional machine learning models were trained: support vector machine, linear discriminant analysis, and naive Bayes classifier. The highest classification accuracy was obtained using RSFC measures in the Slow-4 + 5 band (0.01-0.073 Hz) as features. Leave-one-out cross-validation accuracies were ∼83%, with receiver operating characteristic area-under-the-curve reaching close to 90%. Increased connectivity from right area posterior 9-46v in TLE patients contributed to the high accuracies. With increased sample sizes in the near future, better machine learning models will be trained not only to aid the diagnosis of TLE, but also as a tool to understand this brain disorder.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6484357PMC
http://dx.doi.org/10.1089/brain.2018.0601DOI Listing

Publication Analysis

Top Keywords

machine learning
16
tle patients
16
temporal lobe
8
lobe epilepsy
8
connectome project
8
magnetic resonance
8
resonance imaging
8
resting-state functional
8
patients healthy
8
healthy controls
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!