For non-model plants, functional characterization of genes is still hampered by lack of efficient stable transformation procedures. Here, we report a simple, fast and efficient transformation technique with Agrobacterium rhizogenes for generating stable transgenic roots in living plants to facilitate functional studies in vivo. We showed that injection of A. rhizogenes into stems of various plant species lead to stable transgenic root generation, which can sustain plant growth after the original, non-transgenic roots were cut off. A transformation system was established for pigeon pea, a major woody food crop, after optimizing the selection of A. rhizogenes strains, bacterium concentration, injection position and seedling age. RT-PCR and fluorescence observation indicated a transgenic root induction efficiency of about 39% in pigeon pea. Furthermore, induction of hairy roots was achieved in nine out of twelve tested economically important plants at an efficiency of 15-39%. As proof of concept, bimolecular fluorescence complementation (BiFC) assay was applied to test the interaction between CcCIPK14 and CcCBL1/2 in pigeon pea. Additionally, ectopic expression of the bZIP transcription factor MdHY5 from apple confirmed the utility of the transformation technique for engineering anthocyanin synthesis in roots. Taken together, we show that this method allows fast in vivo studies of gene function in a wide range of plant species.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6686128PMC
http://dx.doi.org/10.1111/pbi.13101DOI Listing

Publication Analysis

Top Keywords

pigeon pea
16
economically plants
8
transformation technique
8
stable transgenic
8
plant species
8
transgenic root
8
development efficient
4
efficient root
4
transgenic
4
root transgenic
4

Similar Publications

Pulses, the dried seeds of leguminous plants, form an important part of the diets of many cultures, including Caribbean cuisine, and are a rich source of protein, carbohydrates, and antioxidants while being low in fats. This study examined the effect of a traditional home-cooking method on the nutritional characteristics of pulses commonly consumed in the Caribbean: red kidney beans and cranberry beans ( L.), cowpeas ( L.

View Article and Find Full Text PDF

This study aimed to compare the conventional soybean ( L.) cultivation method with integrated systems in an Latossolo Vermelho Acriférrico típico and how these systems affect soil cover biomass production, initial nutrient concentration in plant residues, soil respiration and microclimate, as well as soybean growth, physiology and productivity. A comparative analysis of microclimate and soil respiration, plant physiology, and growth was conducted between a conventional soybean monoculture (soybean grown without plant residues on the soil from the previous crop) and soybean grown in soil containing maize residues.

View Article and Find Full Text PDF
Article Synopsis
  • Pigeon pea is a valuable legume grown in tropical and subtropical regions, known for its high protein content and medicinal properties, which support low-income farmers economically.
  • The study assessed how different pigeon pea genotypes respond to drought conditions, finding significant variations in their physiological and biochemical traits, particularly in fresh and dry weight under stress.
  • Analysis using SCoT genetic markers revealed substantial genetic diversity among the eight pigeon pea genotypes, indicating their potential for breeding programs focused on drought tolerance.
View Article and Find Full Text PDF

Pigeon pea ( (L.) Millsp.) is a traditional Chinese medicinal plant widely utilized in folk medicine due to its significant pharmacological and nutritional properties.

View Article and Find Full Text PDF

Microbes such as bacteria and fungi play important roles in nutrient cycling in soils, often leading to the bioavailability of metabolically important mineral elements such as nitrogen (N), phosphorus (P), iron (Fe), and zinc (Zn). Examples of microbes with beneficial traits for plant growth promotion include mycorrhizal fungi, associative diazotrophs, and the N-fixing rhizobia belonging to the α, β and γ class of Proteobacteria. Mycorrhizal fungi generally contribute to increasing the surface area of soil-root interface for optimum nutrient uptake by plants.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!