The influence of zein protein and hydroxypropyl methylcellulose (HPMC) on the texture and volume of gluten-free bread was investigated. The addition of HPMC to starch affected the dough viscoelasticity and it improved the bread volume during baking since it acts as an emulsifier. The addition of zein protein to gluten-free bread increased the crumb firmness and reduced the crust hardness within the range of concentrations investigated. No zein protein network could be observed in the bread crumb. The zein protein, cold mixed at low concentration, did not enhance the dough elasticity. Due to the lack of a protein network noncovalent interactions may stabilize the bubble structure stabilization within the crumb, rather than covalent links of the protein chain. With an optimized amount of zein protein and HPMC hydrocolloid, the gluten-free bread showed similar texture and staling behavior to that of model wheat bread. The optimized recipe, compiled into a spreadsheet, is available in the supporting information. The microstructural observations suggest that zein could be replaced with another protein for this recipe resulting in a similar bread texture.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/jtxs.12394 | DOI Listing |
Am J Physiol Lung Cell Mol Physiol
January 2025
Johns Hopkins University, Division of Pulmonary and Critical Care Medicine, Baltimore, MD, USA.
Obesity is a risk factor for asthma morbidity, associated with less responsiveness to inhaled corticosteroids. CD4+ T-cells are central to the immunology of asthma and may contribute to the unique obese asthma phenotype. We sought to characterize the single cell CD4+ Transcriptional profile differences in obese children with asthma compared to normal weight children with asthma.
View Article and Find Full Text PDFFood Res Int
February 2025
School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, Shandong, PR China. Electronic address:
Food Res Int
February 2025
School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China. Electronic address:
Using Pickering emulsion (PE) as the carrier of active compounds in bio-based coatings constitutes a highly promising research domain. This study focused on creating a food-grade, biocompatible, and antibacterial PE to coat fresh fruits and vegetables, extending their shelf life. Hollow zein/soluble soybean polysaccharide nanoparticles loaded with thymol (H-ZSH/T) were produced using NaHCO as a sacrificial template to stabilize PE.
View Article and Find Full Text PDFCurr Res Food Sci
December 2024
Department of Food Science and Technology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran.
This study evaluated the effects of chemical modification, including ethanol, acetic acid, and natural deep eutectic solvents (NADES), on the secondary and tertiary structures, hydrophobicity, free amine content, protein-protein interactions, and functional properties of zein. The NADES used included choline chloride: oxalic acid, choline chloride: urea, choline chloride: glycerol, and glucose: citric acid. The results reveal that the NADES system significantly altered zein's structures, as evidenced by Fourier transform infrared spectroscopy, fluorescence, and Ultraviolet-Visible Spectroscopy analysis.
View Article and Find Full Text PDFJ Med Virol
January 2025
Division of Cancer Epidemiology, McGill University, Montreal, Quebec, Canada.
The protective effect of naturally acquired humoral immunity against human papillomavirus (HPV) infection remains unclear. To investigate the role of infection-induced antibodies on HPV detection in heterosexual partners, we used data from 392 unvaccinated couples (females aged 18-25 years attended up to six visits over 2 years; males aged 17-37 years attended up to two visits 4 months apart) enrolled (2005-2011) in Montreal. Genital and blood samples were HPV DNA genotyped and tested for L1 antibody titers of 14 HPV genotypes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!