Image representation methods based on deep convolutional neural networks (CNNs) have achieved the state-of-the-art performance in various computer vision tasks, such as image retrieval and person re-identification. We recognize that more discriminative feature embeddings can be learned with supervised deep metric learning and handcrafted features for image retrieval and similar applications. In this paper, we propose a new supervised deep feature embedding with a handcrafted feature model. To fuse handcrafted feature information into CNNs and realize feature embeddings, a general fusion unit is proposed (called Fusion-Net). We also define a network loss function with image label information to realize supervised deep metric learning. Our extensive experimental results on the Stanford online products' data set and the in-shop clothes retrieval data set demonstrate that our proposed methods outperform the existing state-of-the-art methods of image retrieval by a large margin. Moreover, we also explore the applications of the proposed methods in person re-identification and vehicle re-identification; the experimental results demonstrate both the effectiveness and efficiency of the proposed methods.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TIP.2019.2901407DOI Listing

Publication Analysis

Top Keywords

supervised deep
16
handcrafted feature
12
image retrieval
12
proposed methods
12
deep feature
8
feature embedding
8
embedding handcrafted
8
person re-identification
8
feature embeddings
8
deep metric
8

Similar Publications

Novel Gel Formulation and Deep Injection Techniques for Lifting Effects in Cosmetic Dermatology.

J Cosmet Dermatol

January 2025

CGH Compagnie Generale des Hopitaux, Rome, Italy.

Introduction: In recent years, the field of aesthetic dermatology has witnessed a surge in demand for minimally invasive procedures aimed at rejuvenating aging skin. This study aims to address this demand by evaluating the effectiveness of the injectable gel in rejuvenating aging skin, particularly by targeting collagen regeneration and lifting effect.

Materials And Methods: The study involved 43 participants who underwent three monthly injection sessions targeting retaining ligaments.

View Article and Find Full Text PDF

Recent advancements in Earth Observation sensors, improved accessibility to imagery and the development of corresponding processing tools have significantly empowered researchers to extract insights from Multisource Remote Sensing. This study aims to use these technologies for mapping summer and winter Land Use/Land Cover features in Cuenca de la Laguna Merín, Uruguay, while comparing the performance of Random Forests, Support Vector Machines, and Gradient-Boosting Tree classifiers. The materials include Sentinel-2, Sentinel-1 and Shuttle Radar Topography Mission imagery, Google Earth Engine, training and validation datasets and quoted classifiers.

View Article and Find Full Text PDF

Visible-infrared person re-identification (VI-ReID) is a challenging cross-modality retrieval task to match a person across different spectral camera views. Most existing works focus on learning shared feature representations from the final embedding space of advanced networks to alleviate modality differences between visible and infrared images. However, exclusively relying on high-level semantic information from the network's final layers can restrict shared feature representations and overlook the benefits of low-level details.

View Article and Find Full Text PDF

Residual Vision Transformer and Adaptive Fusion Autoencoders for Monocular Depth Estimation.

Sensors (Basel)

December 2024

Institute of Computer and Communication Engineering, Department of Electrical Engineering, National Cheng Kung University, Tainan 701, Taiwan.

Precision depth estimation plays a key role in many applications, including 3D scene reconstruction, virtual reality, autonomous driving and human-computer interaction. Through recent advancements in deep learning technologies, monocular depth estimation, with its simplicity, has surpassed the traditional stereo camera systems, bringing new possibilities in 3D sensing. In this paper, by using a single camera, we propose an end-to-end supervised monocular depth estimation autoencoder, which contains an encoder with a structure with a mixed convolution neural network and vision transformers and an effective adaptive fusion decoder to obtain high-precision depth maps.

View Article and Find Full Text PDF

The integration of liveness detection into biometric systems is crucial for countering spoofing attacks and enhancing security. This study investigates the efficacy of photoplethysmography (PPG) signals, which offer distinct advantages over traditional biometric techniques. PPG signals are non-invasive, inherently contain liveness information that is highly resistant to spoofing, and are cost-efficient, making them a superior alternative for biometric authentication.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!