Current clinical practice relies on clinical history to determine the time since stroke (TSS) onset. Imaging-based determination of acute stroke onset time could provide critical information to clinicians in deciding stroke treatment options, such as thrombolysis. The patients with unknown or unwitnessed TSS are usually excluded from thrombolysis, even if their symptoms began within the therapeutic window. In this paper, we demonstrate a machine learning approach for TSS classification using routinely acquired imaging sequences. We develop imaging features from the magnetic resonance (MR) images and train machine learning models to classify the TSS. We also propose a deep-learning model to extract hidden representations for the MR perfusion-weighted images and demonstrate classification improvement by incorporating these additional deep features. The cross-validation results show that our best classifier achieved an area under the curve of 0.765, with a sensitivity of 0.788 and a negative predictive value of 0.609, outperforming existing methods. We show that the features generated by our deep-learning algorithm correlate with the MR imaging features, and validate the robustness of the model on imaging parameter variations (e.g., year of imaging). This paper advances magnetic resonance imaging analysis one-step-closer to an operational decision support tool for stroke treatment guidance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6661120PMC
http://dx.doi.org/10.1109/TMI.2019.2901445DOI Listing

Publication Analysis

Top Keywords

machine learning
12
learning approach
8
stroke onset
8
onset time
8
stroke treatment
8
imaging features
8
magnetic resonance
8
imaging
7
stroke
5
approach classifying
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!