Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Objective: To develop and verify a CMOS bone-guided cochlear implant (BGCI) microsystem with electrodes placed on the bone surface of the cochlea and the outside of round window for treating high-frequency hearing loss.
Methods: The BGCI microsystem consists of an external unit and an implanted unit. The external system-on-chip is designed to process acoustic signals through an acquisition circuit and an acoustic DSP processor to generate stimulation patterns and commands that are transmitted to the implanted unit through a 13.56 MHz wireless power and bidirectional data telemetry. In the wireless power telemetry, a voltage doubler/tripler (2X/3X) active rectifier is used to enhance the power conversion efficiency and generate 2 and 3 V output voltages. In the wireless data telemetry, phase-locked loop based binary phase-shift keying and load-shift keying modulators/demodulators are adopted for the downlink and uplink data through high-Q coils, respectively. The implanted chip with four-channel high-voltage-tolerant stimulator generates biphasic stimulation currents up to 800 μA.
Results: Electrical tests on the fabricated BGCI microsystem have been performed to verify the chip functions. The in vivo animal tests in guinea pigs have shown the evoked third wave of electrically evoked auditory brainstem response waveforms. It is verified that auditory nerves can be successfully stimulated and acoustic hearing can be partially preserved.
Conclusion And Significance: Different from traditional cochlear implants, the proposed BGCI microsystem is less invasive, preserves partially acoustic hearing, and provides an effective alternative for treating high-frequency hearing loss.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TBME.2019.2901374 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!