Hearing loss caused by exposure to recreational and occupational noise remains a worldwide disabling condition and dysregulation of redox homeostasis is the hallmark of cochlear damage induced by noise exposure. In this review we discuss the dual function of ROS to both promote cell damage (oxidative stress) and cell adaptive responses (ROS signaling) in the cochlea undergoing a stressful condition such as noise exposure. We focus on animal models of noise-induced hearing loss (NIHL) and on the function of exogenous antioxidants to maintaining a physiological role of ROS signaling by distinguishing the effect of exogenous "direct" antioxidants (i.e. CoQ, NAC), that react with ROS to decrease oxidative stress, from the exogenous "indirect" antioxidants (i.e. nutraceutics and phenolic compounds) that can activate cellular redox enzymes through the Keap1-Nrf2-ARE pathway. The anti-inflammatory properties of Nrf2 signaling are discussed in relation to the ROS/inflammation interplay in noise exposure. Unveiling the mechanisms of ROS regulating redox-associated signaling pathways is essential in providing relevant targets for innovative and effective therapeutic strategies against NIHL.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.freeradbiomed.2019.02.022DOI Listing

Publication Analysis

Top Keywords

hearing loss
12
oxidative stress
12
ros signaling
12
noise exposure
12
dysregulation redox
8
redox homeostasis
8
noise-induced hearing
8
ros
6
signaling
5
targeting dysregulation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!