Mutations in myocilin, predominantly within its olfactomedin (OLF) domain, are causative for the heritable form of open angle glaucoma in humans. Surprisingly, mice expressing Tyr423His mutant myocilin, corresponding to a severe glaucoma-causing mutation (Tyr437His) in human subjects, exhibit a weak, if any, glaucoma phenotype. To address possible protein-level discrepancies between mouse and human OLFs, which might lead to this outcome, biophysical properties of mouse OLF were characterized for comparison with those of human OLF. The 1.55 Å resolution crystal structure of mouse OLF reveals an asymmetric 5-bladed β-propeller that is nearly indistinguishable from previous structures of human OLF. Wild-type and selected mutant mouse OLFs mirror thermal stabilities of their human OLF counterparts, including characteristic stabilization in the presence of calcium. Mouse OLF forms thioflavin T-positive aggregates with a similar end-point morphology as human OLF, but amyloid aggregation kinetic rates of mouse OLF are faster than human OLF. Simulations and experiments support the interpretation that kinetics of mouse OLF are faster because of a decreased charge repulsion arising from more neutral surface electrostatics. Taken together, phenotypic differences observed in mouse and human studies of mutant myocilin could be a function of aggregation kinetics rates, which would alter the lifetime of putatively toxic protofibrillar intermediates.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6815101PMC
http://dx.doi.org/10.1021/acs.biochem.8b01309DOI Listing

Publication Analysis

Top Keywords

mouse olf
20
human olf
20
olf
11
mutant myocilin
8
human
8
mouse
8
mouse human
8
olf faster
8
differential misfolding
4
misfolding properties
4

Similar Publications

Article Synopsis
  • Loss-of-function mutations in a specific gene linked to dystonia reveal similarities to idiopathic dystonia, highlighting the gene's role in regulating cAMP levels in the striatum, a brain region critical for movement.
  • Researchers developed a genetic mouse model to study the effects of knocking out this gene in a targeted manner, observing significant motor impairments and dystonic behaviors in these mice.
  • The findings indicate that the loss of this gene increases the excitability of certain neurons, suggesting that reducing this hyperexcitability could lead to potential treatments for both genetic and idiopathic forms of dystonia.
View Article and Find Full Text PDF

Neuron specific quantitation of Gα expression and signaling in murine brain tissue.

Brain Res

November 2024

Department of Pharmacology & Therapeutics and Center for Translational Research in Neurodegeneration, University of Florida College of Medicine, Gainesville, FL, 32610, United States. Electronic address:

The heterotrimeric G-protein α subunit, Gα, acts to transduce extracellular signals through G-protein coupled receptors (GPCRs) and stimulates adenylyl cyclase mediated production of the second messenger cyclic adenosine monophosphate. Numerous mutations in the GNAL gene, which encodes Gα, have been identified as causative for an adult-onset dystonia. These mutations disrupt GPCR signaling cascades in in vitro assays through several mechanisms, and this disrupted signaling is hypothesized to lead to dystonic motor symptoms in patients.

View Article and Find Full Text PDF

The striatal D dopamine receptor (DR) and A adenosine receptor (AR) signaling pathways play important roles in drug-related behaviors. These receptors activate the G protein comprised of a specific combination of αβγ subunits. During assembly, the γ subunit sets the cellular level of the G protein.

View Article and Find Full Text PDF

Background: Cathepsin S (CTSS) is a cysteine protease that played diverse roles in immunity, tumor metastasis, aging and other pathological alterations. At the cellular level, increased CTSS levels have been associated with the secretion of pro-inflammatory cytokines and disrupted the homeostasis of Ca flux. Once CTSS was suppressed, elevated levels of anti-inflammatory cytokines and changes of Ca influx were observed.

View Article and Find Full Text PDF

The heterotrimeric G-protein α subunit, Gα , acts to transduce extracellular signals through G-protein coupled receptors (GPCRs) and stimulates adenylyl cyclase mediated production of the second messenger cyclic adenosine monophosphate. Numerous mutations in the gene, which encodes Gα , have been identified as causative for an adult-onset dystonia. These mutations disrupt GPCR signaling cascades in assays through several mechanisms, and this disrupted signaling is hypothesized to lead to dystonic motor symptoms in patients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!