Dietary enrichment of edible insects with omega 3 fatty acids.

Insect Sci

Laboratory of Entomology, Department of Plant Sciences, Wageningen University, Wageningen, the Netherlands.

Published: June 2020

Edible insects are advocated as sustainable and healthy food and feed. However, commercially produced insects are often low in n-3 fatty acids and have suboptimal n-6/n-3 ratios. A certain amount and proportion of these FAs is required to optimize human health. Flaxseed oil consists primarily (57%) out of alpha-linolenic acid. An experiment was conducted to quantify the effect of flaxseed oil provision on fatty acid composition and to determine the quantity needed to attain a beneficial n-6/n-3 ratio. Three species were used in the experiment: house crickets (Acheta domesticus [L.]), lesser mealworms (Alphitobius diaperinus [Pfanzer]) and black soldier flies (Hermetia illucens [L.]). These were provided with either a control diet or a diet enriched with 1%, 2%, or 4% flaxseed oil during their larval/nymphal stage. Fatty acid profiles of diets and insects were determined via GC-MS. The three species had distinct fatty acid profiles on all four diets, but responded similarly to flaxseed oil addition. For each percent added to the diet, the alpha-linolenic acid content of the insects increased by 2.3%-2.7%. Four percent addition increased the n-3 fatty acid content 10-20 fold in the three species and thereby strongly decreased n-6/n-3 ratios from 18-36 to 0.8-2.4. A ratio below 5 is considered optimal for human health and was achieved by 2% flaxseed oil inclusion for house crickets and lesser mealworms, and at 1% inclusion for black soldier flies. Adding a source of n-3 fatty acids to insect diets can thus improve the nutritional quality of insects.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7216978PMC
http://dx.doi.org/10.1111/1744-7917.12669DOI Listing

Publication Analysis

Top Keywords

flaxseed oil
20
fatty acid
16
fatty acids
12
n-3 fatty
12
three species
12
edible insects
8
n-6/n-3 ratios
8
human health
8
alpha-linolenic acid
8
house crickets
8

Similar Publications

Enhanced toughness of poly(lactic acid) and poly(butylene adipate-co-terephthalate) blends by incorporating an ADR chain-extending agent and a bio-resourced plasticizer.

Int J Biol Macromol

December 2024

College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu Province, China. Electronic address:

Over the past decades, emerging bioplastics have attracted much interest from the scientific and industrial communities because of public concerns about environmental problems and sustainable development. In this study, poly(lactic acid) (PLA) was toughened by ductile biodegradable poly(butylene adipate-co-terephthalate) (PBAT) and biosourced plasticizer epoxidized linseed oil (ELO), and a chain-extending agent (CEA) was added to promote the compatibility and toughness of the bio-blends. It was shown that "in situ" grafted polymers were created in the bio-blends with the aid of CEA, greatly enhancing the compatibility and ductility of the compatibilized blends.

View Article and Find Full Text PDF

Broadly adapted and efficient enzymatic transesterification production of medium and long-chain triglycerides via coconut oil and long-chain triacylglycerols.

Food Chem

December 2024

Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Food and Nutrition, Anhui Agricultural University, Hefei, 230036, China; Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Hubei Hongshan Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Wuhan, 430062, China. Electronic address:

An applicable and highly efficient methodology for the preparation of medium- and long-chain triglycerides (MLCTs) via the enzymatic transesterification of coconut oil with long-chain fatty acid triglycerides, named camellia oil, olive oil, linseed oil, algal oil, and rapeseed oil, respectively, has been proposed. The novel system achieved equilibrium in 5 min, and the MLCT yield ranged from 78.7 to 83.

View Article and Find Full Text PDF

Liver fibrosis is a significant contributor to global morbidity and mortality, making the identification of non-toxic natural therapies to slow its progression essential. This study evaluated the anti-fibrotic potential of a nutraceutical blend comprising extra virgin olive oil, linseed oil, and ginger extract, formulated in both emulsion and nanoemulsion forms, using a rat model of liver fibrosis. Nanoemulsions were prepared using the ultrasonication technique, and their particle size and stability were analyzed via the DLS method.

View Article and Find Full Text PDF

Purpose: Atopic dermatitis (AD) is the most common chronic inflammatory skin disease that severely impairs patient's life quality and represents significant therapeutic challenge due to its pathophysiology arising from skin barrier dysfunction. Topical corticosteroids, the mainstay treatment for mild to moderate AD, are usually formulated into conventional dosage forms that are impeded by low drug permeation, resulting in high doses with consequent adverse effects, and also lack properties that would strengthen the skin barrier. Herein, we aimed to develop biomimetic lamellar lyotropic liquid crystals (LLCs), offering a novel alternative to conventional AD treatment.

View Article and Find Full Text PDF

The effect of ozone treatment on the sensory quality, aroma compounds, phytosterols, and phytosterol oxidation products (POP) in stored plant oils was studied. Cold-pressed flaxseed, cold-pressed rapeseed, and refined rapeseed oils were treated with ozone, air, and nitrogen, then subjected to accelerated storage at 60 °C for 6 days. The sensory evaluation revealed that ozone significantly influenced the sensory profile, with notable cucumber and green-grassy aromas.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!