High-throughput sequencing (HTS) of large panels of single nucleotide polymorphisms (SNPs) provides an alternative or complimentary approach to short tandem repeats (STRs) panels for the analysis of complex DNA mixture forensic samples. For STRs, methods to estimate individual contribution concentrations compare capillary electrophoresis peak heights, peak areas, or HTS allele read counts within a mixture. This article introduces three approaches (mean, median, and slope methods) for estimating individual DNA contributions to forensic mixtures for HTS/massively parallel sequencing (MPS) SNP panels. For SNPs, the major:minor allele ratios or counts, unique to each contributor, were compared to estimate contributor proportion within the mixture using the mean, median, and slope intercept for these alleles. The estimates for these three methods were typically within 5% of planned experimental contributions for defined mixtures.

Download full-text PDF

Source
http://dx.doi.org/10.1111/1556-4029.14030DOI Listing

Publication Analysis

Top Keywords

estimating individual
8
complex dna
8
median slope
8
individual contributions
4
contributions complex
4
dna snp
4
snp mixtures
4
mixtures high-throughput
4
high-throughput sequencing
4
sequencing hts
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!