Co/Co9S8 nanoparticles encapsulated in a N, S, and O ternary-doped carbon matrix were synthesized utilizing a Co-NSOMOF as a single precursor, and they exhibited excellent bifunctional electrocatalytic activity for the OER and HER. Impressively, the water splitting cell exhibited a low cell voltage of 1.56 V at 10 mA cm-2. The high performances were attributed to the synergistic effect and the protection of multi-heteroatom doped carbon shells for active Co/Co9S8 nanoparticles.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c9cc00196dDOI Listing

Publication Analysis

Top Keywords

water splitting
8
co/co9s8 nanoparticles
8
one-step mof-derived
4
mof-derived co/cos
4
co/cos nanoparticles
4
nanoparticles embedded
4
embedded nitrogen
4
nitrogen sulfur
4
sulfur oxygen
4
oxygen ternary-doped
4

Similar Publications

Hydrogen evolution reaction (HER) is a key reaction in electrochemical water splitting for hydrogen production leading to the development of potentially sustainable energy technology. Importantly, the catalysts required for HER must be earth-abundant for their large-scale deployment; silicates representing one such class. Herein, we have synthesized a series of transition mono- and bi- metal metasilicates (with SO32- group) using facile wet-chemical method followed by calcination at a higher temperature.

View Article and Find Full Text PDF

Recent years have witnessed an intense effort to unravel magnetic field effects in electrocatalysis, as they can enhance the performance of common electrocatalysts. Both experimental and theoretical studies have shown that magnetic fields may affect, among others, the macroscopic spin-orbital ordering, charge transport, bubble release, and electron transfer kinetics. This paper highlights Electrochemical Impedance Spectroscopy (EIS) as a tool to analyze and separate the effects of magnetic field on both the oxygen reduction and evolution reactions at cobalt iron oxide electrodes.

View Article and Find Full Text PDF

The commercialisation of PEM water electrolysis is still hindered by the necessity of using noble metals that are rare, expensive and therefore unsustainable. To replace the benchmark HER catalyst Pt with more abundant materials, promising non-noble catalysts need to be identified and optimal electrode preparation and electrolysis conditions need to be transferred between catalyst materials to reveal their full potential under industrially relevant conditions. This study investigates the optimal ink composition for spray-coating the cathode regarding the effects on electrode structure, performance and catalyst layer composition.

View Article and Find Full Text PDF

Hydrogen hydrates exhibit a rich phase diagram influenced by both pressure and temperature, with the so-called C_{2} phase emerging prominently above 2.5 GPa. In this phase, hydrogen molecules are densely packed within a cubic icelike lattice and the interaction with the surrounding water molecules profoundly affects their quantum rotational dynamics.

View Article and Find Full Text PDF

Two-dimensional van der Waals heterojunction materials have demonstrated significant potential for photocatalytic water splitting in hydrogen production, owing to their distinct electronic and optical properties. Among these materials, direct Z-scheme heterojunctions have attracted considerable attention in recent research. In this study, a novel CdO/ZrSSe heterojunction is designed using first-principles calculations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!