A three-dimensional canopy photosynthesis model in rice with a complete description of the canopy architecture, leaf physiology, and mechanical properties.

J Exp Bot

National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.

Published: April 2019

In current rice breeding programs, morphological parameters such as plant height, leaf length and width, leaf angle, panicle architecture, and tiller number during the grain filling stage are used as major selection targets. However, so far, there is no robust approach to quantitatively define the optimal combinations of parameters that can lead to increased canopy radiation use efficiency (RUE). Here we report the development of a three-dimensional canopy photosynthesis model (3dCAP), which effectively combines three-dimensional canopy architecture, canopy vertical nitrogen distribution, a ray-tracing algorithm, and a leaf photosynthesis model. Concurrently, we developed an efficient workflow for the parameterization of 3dCAP. 3dCAP predicted daily canopy RUE for different nitrogen treatments of a given rice cultivar under different weather conditions. Using 3dCAP, we explored the influence of three canopy architectural parameters-tiller number, tiller angle and leaf angle-on canopy RUE. Under different weather conditions and different nitrogen treatments, canopy architecture optimized by manipulating these parameters can increase daily net canopy photosynthetic CO2 uptake by 10-52%. Generally, a smaller tiller angle was predicted for most elite rice canopy architectures, especially under scattered light conditions. Results further show that similar canopy RUE can be obtained by multiple different parameter combinations; these combinations share two common features of high light absorption by leaves in the canopy and a high level of coordination between the nitrogen concentration and the light absorbed by each leaf within the canopy. Overall, this new model has potential to be used in rice ideotype design for improved canopy RUE.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6487591PMC
http://dx.doi.org/10.1093/jxb/ery430DOI Listing

Publication Analysis

Top Keywords

canopy rue
16
canopy
15
three-dimensional canopy
12
photosynthesis model
12
canopy architecture
12
canopy photosynthesis
8
nitrogen treatments
8
weather conditions
8
tiller angle
8
leaf
6

Similar Publications

Background: In north China, wide-belt sowing (WBS) is widely used in wheat production because it increases the yield by improving the plant distribution and reducing the competition for resources compared with conventional narrow-drill sowing (NDS). Yield formation is also different for wheat varieties with distinct spike types. Therefore, it is important to explore the effects of WBS on the yields of wheat varieties with different spike types.

View Article and Find Full Text PDF

Increased aboveground biomass is contingent on enhanced photosynthetically active radiation intercepted by the canopy (IPAR), improved radiation use efficiency (RUE), or both. We investigated whether and how optimized agronomic management practices promote IPAR and RUE. Four integrated agronomic management treatments, i.

View Article and Find Full Text PDF

The radiation use efficiency (RUE) is one of the most important functional traits determining crop productivity. The coordination of the vertical distribution of light and leaf nitrogen has been proven to be effective in boosting the RUE from both experimental and computational evidence. However, previous simulation studies have primarily assumed that the leaf area is uniformly distributed along the canopy depth, rarely considering the optimization of the leaf area distribution, especially for C4 crops.

View Article and Find Full Text PDF

Genotype × environment × management analysis to define allometric rules between leaves and stems in wheat.

J Exp Bot

October 2024

Engineering Research Center of Plant Phenotyping, Ministry of Education, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, 210095 Nanjing, China.

Allometric rules provide insights into structure-function relationships across species and scales and are commonly used in ecology. The fields of agronomy, plant phenotyping, and modeling also need simplifications such as those provided by allometric rules to reconcile data at different temporal and spatial levels (organs/canopy). This study explores the variations in relationships for wheat in terms of the distribution of crop green area between leaves and stems, and the allocation of above-ground biomass between leaves and stems during the vegetative period, using a large dataset covering different years, countries, genotypes, and management practices.

View Article and Find Full Text PDF

The optimized winter wheat sowing method comprising wide-belt sowing (WBS) can improve the ears number and biomass to increase the grain yield, compared with conventional narrow-drill sowing (NDS). The seed rate and the interaction between the sowing method and seed rate also affect yield formation. However, the effects of the sowing method and seed rate, as well as their interaction on biomass production, particularly the interception of solar radiation (ISR) and radiation use efficiency (RUE), are unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!